scholarly journals Synthesis and magnetic property of a Tsai-type 2/1 approximant

2014 ◽  
Vol 70 (a1) ◽  
pp. C92-C92
Author(s):  
Yuta Kinoshita ◽  
Takanobu Hiroto ◽  
Ryuji Tamura

Various Tsai-type quasicrystals and approximants have been synthesized by replacing the constituent elements of the Cd-RE systems, based on the condition, (e/a)~2.0,. However, systems containing transition metals (TMs) have been rarely reported and, therefore, in this work we aimed to synthesize TM-bearing Tsai-type quasicrystals and approximants. Starting from the composition of the Ga-Pd-Gd 1/1 approximant [1], a search of TM-bearing approximants was performed by replacing Pd (1.376 Å) by Pt (1.378 Å). In this research, alloys of various compositions around the reported composition of 1/1 Ga-Pd-Gd were prepared by arc melting and they were then annealed at various conditions. The phase constitution was studied by X-ray diffraction and the thermal stability of the phases was examined by differential thermal analysis (DTA) for samples before and after annealing. As a result, we have observed formation of both 1/1 and 2/1 approximants with a=14.37 Å and 23.23 Å, respectively. The DTA curve exhibits no exothermic peak in the heating run up to the melting point (Tm=1180 K) for the 2/1 approximant, which suggests that the obtained 2/1 approximant is thermally stable up to Tm. The magnetic properties of the 1/1 and 2/1 approximants will be reported in the presentation.

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 100
Author(s):  
Urszula Klekotka ◽  
Dariusz Satuła ◽  
Simo Spassov ◽  
Beata Kalska-Szostko

In this paper, a series of experiments are reported where ferrite nanoparticles were synthesized with different substitution percentages (5, 10, 15, or 20%) of Fe2+ by Co2+, Mn2+, or Ni2+ ions. Afterwards, the prepared nanoparticles were thermally treated between 50 and 500 °C in air for 24 h in order to observe how doping influences the oxidation process induced by temperature elevation and access to O2. Nanoparticles were imaged before and after thermal treatment by transmission electron microscopy and were analyzed by X-ray diffraction, vibrating sample magnetometry, and Mössbauer spectroscopy. Presented studies reveal that the amount and kind of doped transition metals (of replaced Fe2+) strongly affect the oxidation process of ferrite nanoparticles, which can govern the application possibility. Each transition element suppresses the oxidation process in comparison to pure Fe-oxides, with the highest impact seen with Ni2+.


2015 ◽  
Vol 35 (5) ◽  
pp. 407-415 ◽  
Author(s):  
Kimi Jain ◽  
Gaurav Madhu ◽  
Haripada Bhunia ◽  
Pramod K. Bajpai ◽  
Golok B. Nando ◽  
...  

Abstract Partially biodegradable polymer films from the blends of polypropylene (PP) and poly(L-lactide) (PLLA) were prepared in an internal mixer by melt blending technique, with and without compatibilizer, maleic anhydride grafted polypropylene (MAPP), followed by compression molding. With regard to tensile properties, 80/20 (PP/PLLA) and 80/20/6 (PP/PLLA/MAPP) were found as the optimum blends with best combination of the ingredients. Therefore, the blend samples, namely, PP80 (80% PP+20% PLLA) and PP80C6 (80% PP+20% PLLA+6 phr MAPP) were selected as ‘optimized’ blends and further characterized for their physical, chemical, morphological, and thermal properties. X-ray diffraction studies showed that neat PP and PP80C6 had the same crystallite size indicating compatibility between PP and PLLA due to MAPP. Fourier transform infrared spectroscopy and scanning electron microsopy investigations revealed that the two polymers were completely immiscible in absence of the compatibilizer. Bacterial biodegradation of the samples was performed by exposure to Pseudomonas stutzeri for 60 days and measured in terms of weight loss, optical density, and thermal stability of the samples before and after degradation. The results showed that 80/20 (PP/PLLA) blends undergo considerable degradation. Reduction in thermal stability of the film samples was also observed through thermogravimetric analysis, which was useful in accelerating their biodegradation.


Cerâmica ◽  
2016 ◽  
Vol 62 (362) ◽  
pp. 133-139
Author(s):  
J. C. Macêdo-Fonsêca ◽  
A. A. A. Tino ◽  
M. P. A. Silva-Alves ◽  
R. M. Souto-Maior

Abstract A sodium montmorillonite clay (Na+MMT) was modified with different contents of a reactive salt derived from thiophene (trimethyl-(2-thiophen-3-yl-ethyl)-ammonium bromide) (TMETA). The thiophene salt in the organoclay (xtioMMT) was oxidatively polymerized in situ, giving rise to montmorillonite clay intercalated with a polythiophene salt (xpoltioMMT). Analysis by Fourier transform infrared spectroscopy shows a difference in organization of the salt inside the clay lamellae, before and after its polymerization. X-ray diffraction indicates that the salts, whether polymeric or not, are arranged as a monolayer for all compositions. Differently to the expected, the thermal stability of the organoclays decreases upon polymerization suggesting degradation of TMETA in the polymerization reaction.


2015 ◽  
Vol 6 ◽  
pp. 1385-1396 ◽  
Author(s):  
Beata Kalska-Szostko ◽  
Urszula Wykowska ◽  
Dariusz Satula ◽  
Per Nordblad

This paper presents the results of a thermal treatment process for magnetite nanoparticles in the temperature range of 50–500 °C. The tested magnetite nanoparticles were synthesized using three different methods that resulted in nanoparticles with different surface characteristics and crystallinity, which in turn, was reflected in their thermal durability. The particles were obtained by coprecipitation from Fe chlorides and decomposition of an Fe(acac)3 complex with and without a core–shell structure. Three types of ferrite nanoparticles were produced and their thermal stability properties were compared. In this study, two sets of unmodified magnetite nanoparticles were used where crystallinity was as determinant of the series. For the third type of particles, a Ag shell was added. By comparing the coated and uncoated particles, the influence of the metallic layer on the thermal stability of the nanoparticles was tested. Before and after heat treatment, the nanoparticles were examined using transmission electron microscopy, IR spectroscopy, differential scanning calorimetry, X-ray diffraction and Mössbauer spectroscopy. Based on the obtained results, it was observed that the fabrication methods determine, to some extent, the sensitivity of the nanoparticles to external factors.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


2011 ◽  
Vol 314-316 ◽  
pp. 273-278
Author(s):  
Yu Hua Dong ◽  
Ke Ren ◽  
Qiong Zhou

Linear low density polyethylene (LLDPE) was chemically modified with grafting maleic anhydride (MAH) monomer on its backbone by melting blending. Nano-particles SiO2 was modified by cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and anionic surfactant sulfosalicylic acid (SSA) and added to PE coating respectively. Measurement of membrane potential showed that the coating containing modified SiO2 nano-particles had characteristic of ion selectivity. The properties of the different coatings were investigated according to relative industrial standards. Experimental results indicated that PE coating with ion selectivity had better performances, such as adhesion strength, cathodic disbonding and anti-corrosion, than those of coating without ion selectivity. Crystal structure of the coatings before and after alkali corrosion was characterized by Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD). Structure of the coating without ion selectivity was damaged by NaOH alkali solution, causing mechanical properties being decreased. And the structure of the ion selective coatings was not affected.


2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Jiba N. Dahal ◽  
Kalangala Sikkanther Syed Ali ◽  
Sanjay R. Mishra

Intermetallic compounds of Dy2Fe16Ga1−xNbx (x = 0.0 to 1.00) were synthesized by arc melting. Samples were investigated for structural, magnetic, and hyperfine properties using X-ray diffraction, vibration sample magnetometer, and Mossbauer spectrometer, respectively. The Rietveld analysis of room temperature X-ray diffraction data shows that all the samples were crystallized in Th2Fe17 structure. The unit cell volume of alloys increased linearly with an increase in Nb content. The maximum Curie temperature Tc ~523 K for x = 0.6 sample is higher than Tc = 153 K of Dy2Fe17. The saturation magnetization decreased linearly with increasing Nb content from 61.57 emu/g for x = 0.0 to 42.46 emu/g for x = 1.0. The Mössbauer spectra and Rietveld analysis showed a small amount of DyFe3 and NbFe2 secondary phases at x = 1.0. The hyperfine field of Dy2Fe16Ga1−xNbx decreased while the isomer shift values increased with the Nb content. The observed increase in isomer shift may have resulted from the decrease in s electron density due to the unit cell volume expansion. The substantial increase in Tc of thus prepared intermetallic compounds is expected to have implications in magnets used for high-temperature applications.


Author(s):  
F. Mostefa ◽  
Nasr Eddine Bouhamou ◽  
H.A. Mesbah ◽  
Salima Aggoun ◽  
D. Mekhatria

This work aims to study the feasibility of making a geopolymer cement based on dredged sediments, from the Fergoug dam (Algeria) and to evaluate their construction potential particularly interesting in the field of special cementitious materials. These sediments due to their mineralogical composition as aluminosilicates; are materials that can be used after heat treatment. Sedimentary clays were characterized before and after calcination by X-ray diffraction, ATG / ATD, spectroscopy (FTIR) and XRF analysis. The calcination was carried out on the raw material sieved at 80 μm for a temperature of 750 ° C, for 3.4 and 5 hours. The reactivity of the calcined products was measured using isothermal calorimetric analysis (DSC) on pastes prepared by mixing an alkaline solution of sodium hydroxide (NaOH) 8 M in an amount allowing to have a Na / Al ratio close to 1 (1: 1). Also, cubic mortar samples were prepared with a ratio L / S: 0.8, sealed and cured for 24 hours at 60 ° C and then at room temperature until the day they were submited to mechanical testing. to check the extent of geopolymerization. The results obtained allowed to optimize the calcination time of 5 hours for a better reactivity of these sediments, and a concentration of 8M of sodium hydroxide and more suitable to have the best mechanical performances.


Author(s):  
Zhong Cheng ◽  
Yao Li ◽  
Chun Sui ◽  
Xiaobo Sun ◽  
Yong Xie

Human hydroxysteroid dehydrogenase-like protein 2 (HSDL2) is a member of the short-chain dehydrogenase/reductase (SDR) subfamily of oxidoreductases and contains an N-terminal catalytic domain and a C-termianl sterol carrier protein type 2 (SCP-2) domain. In this study, the C-terminal SCP-2 domain of human HSDL2, including residues Lys318–Arg416, was produced inEscherichia coli, purified and crystallized. X-ray diffraction data were collected to 2.10 Å resolution. The crystal belonged to the trigonal space groupP3121 (orP3221), with unit-cell parametersa=b= 70.4,c= 60.6 Å, α = β = 90, γ = 120°. Two protein molecules are present in the asymmetric unit, resulting in a Matthews coefficient of 2.16 Å3 Da−1and an approximate solvent content of 43%.


Sign in / Sign up

Export Citation Format

Share Document