scholarly journals Motion optimization of humanoid mobile robot with high redundancy

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hongxing Wang ◽  
LianZheng Ge ◽  
Ruifeng Li ◽  
Yunfeng Gao ◽  
Chuqing Cao

Purpose An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research also presents a motion optimization based on the 2-Norm of high-redundant mobile humanoid robots, in which a kinematic model is designed through the entire modeling. Design/methodology/approach The current study designs a highly redundant humanoid mobile robot with a differential mobile platform. The high-redundancy mobile humanoid robot consists of three modular parts (differential driving platform with two degrees of freedom (DOF), namely, left and right arms with seven DOF, respectively) and has total of 14 DOFs. Given the high redundancy of humanoid mobile robot, a kinematic model is designed through the entire modeling and an optimal solution extraction method based on 2-norm is proposed to solve the inverse kinematics multiple solutions problem. That is, the 2-norm of the angle difference before and after rotation is used as the shortest stroke index to select the optimal solution. The optimal solution of the inverse kinematics equation in the step is obtained by solving the minimum value of the objective function of a step. Through the step-by-step cycle in the entire tracking process, the kinematic optimization of the highly redundant humanoid robot in the entire tracking process is realized. Findings Compared with the before and after motion optimizations based on the 2-norm algorithm of the robot, its motion after optimization shows minimal fluctuation, improved smoothness, limited energy consumption and short path during the entire mobile tracking and operating process. Research limitations/implications In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot. Practical implications In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot. Social implications In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot. Originality/value Motion optimization based on the 2-norm of a highly redundant humanoid mobile robot with the entire modeling is performed on the basis of the entire modeling. This motion optimization can make the highly redundant humanoid mobile robot’s motion path considerably short, minimize energy loss and shorten time. These researches provide a theoretical basis for the follow-up research of the service robot, including tracking and operating target, etc. Finally, the motion optimization algorithm is verified by the tracking and operating behaviors of the robot and an example.

Author(s):  
Hao Wang ◽  
GuoHua Gao ◽  
Qixiao Xia ◽  
Han Ren ◽  
LianShi Li ◽  
...  

Purpose The purpose of this paper is to present a novel stretch-retractable single section (SRSS) continuum manipulator which owns three degrees of freedom and higher motion range in three-dimension workspace than regular single continuum manipulator. Moreover, the motion accuracy was analyzed based on the kinematic model. In addition, the experiments were carried out for validation of the theory. Design/methodology/approach A kinematics model of the SRSS continuum manipulator is presented for analysis on bending, rotating and retracting in its workspace. To discuss the motion accuracy of the SRSS continuum manipulator, the dexterity theory was introduced based on the decomposing of the Jacobian matrix. In addition, the accuracy of motion is estimated based on the inverse kinematics and dexterity theory. To verify the presented theory, the motion of free end was tracked by an electromagnetic positioning system. According to the comparison of experimental value and theoretical analysis, the free end error of SRSS continuum manipulator is less than 6.24 per cent in the region with favorable dexterity. Findings This paper presents a new stretch-retractable continuum manipulator that the structure was composed of several springs as the backbone. Thus, the SRSS continuum manipulator could own wide motion range depending on its retractable structure. Then, the motion accuracy character of the SRSS continuum manipulator in the different regions of its workspace was obtained both theoretically and experimentally. The results show that the high accuracy region distributes in the vicinity of the outer boundary of the workspace. The motion accuracy gradually decreases with the motion position approaching to the center of its workspace. Research limitations/implications The presented SRSS continuum manipulator owns three degrees of freedom. The future work would be focused on the two-section structure which will own six degrees of freedom. Practical implications In this study, the SRSS continuum manipulator could be extended to six degrees of freedom continuum robot with two sections that is less one section than regular six degrees of freedom with three single section continuum manipulator. Originality/value The value of this study is to propose a SRSS continuum manipulator which owns three degrees of freedom and could stretch and retract to expend workspace, for which the accuracy in different regions of the workspace was analyzed and validated based on the kinematics model and experiments. The results could be feasible to plan the motion space of the SRSS continuum manipulator for keeping in suitable accuracy region.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alok Ranjan Sahoo ◽  
Pavan Chakraborty

Purpose The purpose of this paper is to develop a tendon actuated variable stiffness double spring based continuously tapered multi-section flexible robot and study its capability to achieve the desired bending and compression for inspection in cluttered environments. Design/methodology/approach Spring-based continuum manipulators get compressed while actuated for bending. This property can be used for the advantage in cluttered environments if one is able to control both bending and compression. Here, this paper uses a mechanics based model to achieve the desired bending and compression. Moreover, this study tries to incorporate the tapered design to help in independent actuation of the distal sections with minimal effects on proximal sections. This study is also trying to incorporate the double spring based design to minimize the number of spacers in the robot body. Findings The model was able to produce desired curvature at the tip section with less than 4.62% error. The positioning error of the manipulator is nearly 3.5% which is at par with the state-of-the-art manipulators for search and rescue operations. It was also found that the use of double spring can effectively reduce the number of spacers required. It can be helpful in smooth robot to outer world interaction without any kink. From the experiments, it has been found that the error of the kinematic model decreases as one moves from high radius of curvature to low radius of curvature. Error is maximum when the radius of curvature is infinity. Practical implications The proposed manipulator can be used for search operations in cluttered environments such as collapsed buildings and maintenance of heavy machineries in industries. Originality/value The novelty of this paper lies in the design and the proposed kinematics inverse kinematics for a spring-based continuously tapered multi-section manipulator.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaofeng Liu ◽  
Jiahong Xu ◽  
Yuhong Liu

Purpose The purpose of this research on the control of three-axis aero-dynamic pendulum with disturbance is to facilitate the applications of equipment with similar pendulum structure in intelligent manufacturing and robot. Design/methodology/approach The controller proposed in this paper is mainly implemented in the following ways. First, the kinematic model of the three-axis aero-dynamic pendulum is derived in state space form to construct the predictive model. Then, according to the predictive model and objective function, the control problem can be expressed a quadratic programming (QP) problem. The optimal solution of the QP problem at each sampling time is the value of control variable. Findings The trajectory tracking and point stability tests performed on the 3D space with different disturbances are validated and the results show the effectiveness of the proposed control strategy. Originality/value This paper proposes a nonlinear unstable three-axis aero-dynamic pendulum with less power devices. Meanwhile, the trajectory tracking and point stability problem of the pendulum system is investigated with the model predictive control strategy.


Author(s):  
Guowei Pan ◽  
Wenliang Chen ◽  
Hui Wang

Purpose The purpose of this paper is to use the redundancy of a new hybrid automatic fastening system (HAFS) for aircraft assembly in the best way. Design/methodology/approach First, the kinematic model of HAFS is divided into three sub-models, which are the upper/lower tool and parallel robot. With the geometric coordination relationship, a comprehensive kinematic model of the HAFS is built by mathematically assembling the sub-models based on the DH method. Then, a novel master-slave decoupling strategy for inverse kinematics solution is proposed. With the combination of the minimum energy consumption and the comfortable configuration, a multi-objective redundancy resolution method is developed to optimize the fastening configuration of the HAFS, which keep the HAFS away from the joint-limits and collision avoiding in the aircraft panel assembly process. Findings An efficient multi-objective posture optimization algorithm to use the redundancy in the best way is obtained. Simulation and an experiment are used to demonstrate the correctness of the proposed method. Moreover, the position and orientation errors of the drilling holes are within 0.222 mm and 0.356°, which are accurate enough for the automatic fastening in aircraft manufacturing. Practical implications This method has been used in the HAFS control system, and the practical results show the aircraft components can be fastened automatically through this method with high efficiency and high quality. Originality/value This paper proposes a comprehensive kinematic model and a novel decoupling strategy for inverse kinematic solution of the HAFS, which provides a reference to utilize the redundancy in the best way for a hybrid machine with redundant function.


2017 ◽  
Vol 34 (7) ◽  
pp. 2409-2421 ◽  
Author(s):  
Chung-Hsun Sun ◽  
Sheng-Kai Huang ◽  
Hsuan Chen ◽  
Cheng-Wei Ye ◽  
Yin-Tien Wang ◽  
...  

Purpose Based on laser-range-finder (LRF) sensing, the control design of location and orientation stabilization for the mobile robot is investigated. However, the practical limitation of the LRF sensing is usually ignored in the control design, which leads to incorrect localization and unexpected control results. The purpose of this study is to design the fuzzy controller subject to the practical limitation on the LRF-based localization for a differentially driven wheeled mobile robot. Design/methodology/approach First, the Takagi–Sugeno (T-S) fuzzy model is derived from the polar kinematic model of a differentially driven mobile robot. Then, the fuzzy controller is designed to the derived T-S fuzzy kinematic model in accordance with the Lyapunov stabilization theorem. The derived Lyapunov stabilization conditions for the fuzzy control design are expressed as the linear matrix inequality (LMI) form and effectively solved by LMI tools. The practical limitation on the LRF-based localization is also expressed as the LMI form and simultaneously solved with the control design. Finding The location and posture stabilization experiments are carried out on a mobile robot with LRF-based localization to prove the effectiveness of the proposed T-S fuzzy model-based control design. Furthermore, the ground truth experiment evaluates the accuracy of LRF-based localization. Originality/value The contribution of this study is to develop the fuzzy control law for a differentially driven wheeled mobile robot under the practical limitation on LRF-based localization. The proposed control design can be applied to other robots with practical limitations on the sensors.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 64 ◽  
Author(s):  
Yingbai Hu ◽  
Hang Su ◽  
Longbin Zhang ◽  
Shu Miao ◽  
Guang Chen ◽  
...  

The mobile robot kinematic model is a nonlinear affine system, which is constrained by velocity and acceleration limits. Therefore, the traditional control methods may not solve the tracking problem because of the physical constraint. In this paper, we present the nonlinear model predictive control (NMPC) algorithm to track the desired trajectory based on neural-dynamic optimization. In the proposed algorithm, the NMPC scheme utilizes a new neural network named the varying-parameter convergent differential neural network (VPCDNN) which is a Hopfifield-neural network structure with respect to the differential equation theory to solve the quadratic programming (QP) problem. The new network structure converges to the global optimal solution and it is more efficient than traditional numerical methods. In the simulation, we verify that the proposed method is able to successfully track reference trajectories with a two-wheel mobile robot. The experimental validation has been conducted in simulation and the results show that the proposed method is able to precisely track the trajectory maintaining a high robustness based on the VPCDNN solver.


2019 ◽  
Vol 25 (6) ◽  
pp. 83-100
Author(s):  
Muna Mohammed Jawad ◽  
Esraa Adnan Hadi

In general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot.  Simulation results, which carried out using MATLAB 2014 environment, show the validity of the kinematic model for Nonholonomic mobile robot and demonstration that the proposed algorithm perform better than original PSO and FF algorithms under the same environmental constraints by providing the smoothness velocity and shortest path for each mobile robot.                                                                                


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 120-127 ◽  
Author(s):  
Chihiro Ohye ◽  
Tohru Shibazaki ◽  
Junji Ishihara ◽  
Jie Zhang

Object. The effects of gamma thalamotomy for parkinsonian and other kinds of tremor were evaluated. Methods. Thirty-six thalamotomies were performed in 31 patients by using a 4-mm collimator. The maximum dose was 150 Gy in the initial six cases, which was reduced to 130 Gy thereafter. The longest follow-up period was 6 years. The target was determined on T2-weighted and proton magnetic resonance (MR) images. The point chosen was in the lateral-most part of the thalamic ventralis intermedius nucleus. This is in keeping with open thalamotomy as practiced at the authors' institution. In 15 cases, gamma thalamotomy was the first surgical procedure. In other cases, previous therapeutic or vascular lesions were visible to facilitate targeting. Two types of tissue reaction were onserved on MR imaging: a simple oval shape and a complex irregular shape. Neither of these changes affected the clinical course. In the majority of cases, the tremor subsided after a latent interval of approximately 1 year after irradiation. The earliest response was demonstrated at 3 months. In five cases the tremor remained. In four of these cases, a second radiation session was administered. One of these four patients as well as another patient with an unsatisfactory result underwent open thalamotomy with microrecording. In both cases, depth recording adjacent to the necrotic area revealed normal neuronal activity, including the rhythmic discharge of tremor. Minor coagulation was performed and resulted in immediate and complete arrest of the remaining tremor. Conclusions. Gamma thalamotomy for Parkinson's disease seems to be an alternative useful method in selected cases.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 113-119 ◽  
Author(s):  
D. Hung-Chi Pan ◽  
Wan-Yuo Guo ◽  
Wen-Yuh Chung ◽  
Cheng-Ying Shiau ◽  
Yue-Cune Chang ◽  
...  

Object. A consecutive series of 240 patients with arteriovenous malformations (AVMs) treated by gamma knife radiosurgery (GKS) between March 1993 and March 1999 was evaluated to assess the efficacy and safety of radiosurgery for cerebral AVMs larger than 10 cm3 in volume. Methods. Seventy-six patients (32%) had AVM nidus volumes of more than 10 cm3. During radiosurgery, targeting and delineation of AVM nidi were based on integrated stereotactic magnetic resonance (MR) imaging and x-ray angiography. The radiation treatment was performed using multiple small isocenters to improve conformity of the treatment volume. The mean dose inside the nidus was kept between 20 Gy and 24 Gy. The margin dose ranged between 15 to 18 Gy placed at the 55 to 60% isodose centers. Follow up ranged from 12 to 73 months. There was complete obliteration in 24 patients with an AVM volume of more than 10 cm3 and in 91 patients with an AVM volume of less than 10 cm3. The latency for complete obliteration in larger-volume AVMs was significantly longer. In Kaplan—Meier analysis, the complete obliteration rate in 40 months was 77% in AVMs with volumes between 10 to 15 cm3, as compared with 25% for AVMs with a volume of more than 15 cm3. In the latter, the obliteration rate had increased to 58% at 50 months. The follow-up MR images revealed that large-volume AVMs had higher incidences of postradiosurgical edema, petechiae, and hemorrhage. The bleeding rate before cure was 9.2% (seven of 76) for AVMs with a volume exceeding 10 cm3, and 1.8% (three of 164) for AVMs with a volume less than 10 cm3. Although focal edema was more frequently found in large AVMs, most of the cases were reversible. Permanent neurological complications were found in 3.9% (three of 76) of the patients with an AVM volume of more than 10 cm3, 3.8% (three of 80) of those with AVM volume of 3 to 10 cm3, and 2.4% (two of 84) of those with an AVM volume less than 3 cm3. These differences in complications rate were not significant. Conclusions. Recent improvement of radiosurgery in conjunction with stereotactic MR targeting and multiplanar dose planning has permitted the treatment of larger AVMs. It is suggested that gamma knife radiosurgery is effective for treating AVMs as large as 30 cm3 in volume with an acceptable risk.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 96-101 ◽  
Author(s):  
Jong Hee Chang ◽  
Jin Woo Chang ◽  
Yong Gou Park ◽  
Sang Sup Chung

Object. The authors sought to evaluate the effects of gamma knife radiosurgery (GKS) on cerebral arteriovenous malformations (AVMs) and the factors associated with complete occlusion. Methods. A total of 301 radiosurgical procedures for 277 cerebral AVMs were performed between December 1988 and December 1999. Two hundred seventy-eight lesions in 254 patients who were treated with GKS from May 1992 to December 1999 were analyzed. Several clinical and radiological parameters were evaluated. Conclusions. The total obliteration rate for the cases with an adequate radiological follow up of more than 2 years was 78.9%. In multivariate analysis, maximum diameter, angiographically delineated shape of the AVM nidus, and the number of draining veins significantly influenced the result of radiosurgery. In addition, margin radiation dose, Spetzler—Martin grade, and the flow pattern of the AVM nidus also had some influence on the outcome. In addition to the size, topography, and radiosurgical parameters of AVMs, it would seem to be necessary to consider the angioarchitectural and hemodynamic aspects to select proper candidates for radiosurgery.


Sign in / Sign up

Export Citation Format

Share Document