Inverse kinematics solution and posture optimization of a new redundant hybrid automatic fastening system for aircraft assembly

Author(s):  
Guowei Pan ◽  
Wenliang Chen ◽  
Hui Wang

Purpose The purpose of this paper is to use the redundancy of a new hybrid automatic fastening system (HAFS) for aircraft assembly in the best way. Design/methodology/approach First, the kinematic model of HAFS is divided into three sub-models, which are the upper/lower tool and parallel robot. With the geometric coordination relationship, a comprehensive kinematic model of the HAFS is built by mathematically assembling the sub-models based on the DH method. Then, a novel master-slave decoupling strategy for inverse kinematics solution is proposed. With the combination of the minimum energy consumption and the comfortable configuration, a multi-objective redundancy resolution method is developed to optimize the fastening configuration of the HAFS, which keep the HAFS away from the joint-limits and collision avoiding in the aircraft panel assembly process. Findings An efficient multi-objective posture optimization algorithm to use the redundancy in the best way is obtained. Simulation and an experiment are used to demonstrate the correctness of the proposed method. Moreover, the position and orientation errors of the drilling holes are within 0.222 mm and 0.356°, which are accurate enough for the automatic fastening in aircraft manufacturing. Practical implications This method has been used in the HAFS control system, and the practical results show the aircraft components can be fastened automatically through this method with high efficiency and high quality. Originality/value This paper proposes a comprehensive kinematic model and a novel decoupling strategy for inverse kinematic solution of the HAFS, which provides a reference to utilize the redundancy in the best way for a hybrid machine with redundant function.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alok Ranjan Sahoo ◽  
Pavan Chakraborty

Purpose The purpose of this paper is to develop a tendon actuated variable stiffness double spring based continuously tapered multi-section flexible robot and study its capability to achieve the desired bending and compression for inspection in cluttered environments. Design/methodology/approach Spring-based continuum manipulators get compressed while actuated for bending. This property can be used for the advantage in cluttered environments if one is able to control both bending and compression. Here, this paper uses a mechanics based model to achieve the desired bending and compression. Moreover, this study tries to incorporate the tapered design to help in independent actuation of the distal sections with minimal effects on proximal sections. This study is also trying to incorporate the double spring based design to minimize the number of spacers in the robot body. Findings The model was able to produce desired curvature at the tip section with less than 4.62% error. The positioning error of the manipulator is nearly 3.5% which is at par with the state-of-the-art manipulators for search and rescue operations. It was also found that the use of double spring can effectively reduce the number of spacers required. It can be helpful in smooth robot to outer world interaction without any kink. From the experiments, it has been found that the error of the kinematic model decreases as one moves from high radius of curvature to low radius of curvature. Error is maximum when the radius of curvature is infinity. Practical implications The proposed manipulator can be used for search operations in cluttered environments such as collapsed buildings and maintenance of heavy machineries in industries. Originality/value The novelty of this paper lies in the design and the proposed kinematics inverse kinematics for a spring-based continuously tapered multi-section manipulator.


2017 ◽  
Vol 37 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Junxia Jiang ◽  
Chen Bian ◽  
Yinglin Ke

Purpose The purpose of this paper is to design a new method to realize automatic assembly of aircraft components with large shafts such as canard and vertical tail. The assembly structure of component with large shaft and fuselage is a mating assembly structure, and it is a challenge to satisfy the precision and assembly requirement. Design/methodology/approach According to the assembly structure features and process requirements of an aircraft component with large shaft, the operating principle of precise assembly system for shaft-hole mating is analyzed in this paper. The model of compliant assembly for shaft-hole mating is constructed, and force condition analysis of the compliant assembly is performed. An automatic precise shaft-hole assembly method for aircraft assembly using 5 degrees of freedom spatial mechanism, compliance technology and servo feeding system is put forward based on the analysis. A 5 degrees of freedom passive compliant experimental equipment has been developed. Findings Application test results of the 5 degrees of freedom passive compliant experimental equipment show that the simulated canard can be mated automatically and accurately through this method with high efficiency and high quality as long as the tip of shaft enters into the range of hole’s chamfer. Practical implications This method has been used in an aircraft assembly project. The practical results show that the aircraft components with large shafts can be mated automatically and accurately through this method with high efficiency and high quality. Originality/value This paper presents a new method and designs a new assembly system to realize the assembly of the aircraft components with large shafts. The research will promote the automation of fuselage assembly.


Author(s):  
Miaolei He ◽  
Changji Ren ◽  
Jilin He ◽  
Kang Wu ◽  
Yuming Zhao ◽  
...  

Purpose Excellent obstacle surmounting performance is essential for the robotic vehicles in uneven terrain. However, existing robotic vehicles depend on complex mechanisms or control algorithms to surmount an obstacle. Therefore, this paper aims to propose a new simple configuration of an all-terrain robotic vehicle with eight wheels including four-swing arms. Design/methodology/approach This vehicle is driven by distributed hydraulic motors which provide high mobility. It possesses the ability to change the posture by means of cooperation of the four-swing arms. This ensures that the vehicle can adapt to complex terrain. In this paper, the bionic mechanism, control design and steering method of the vehicle are introduced. Then, the kinematic model of the center of gravity is studied. Afterward, the obstacle surmounting performance based on a static model is analyzed. Finally, the simulation based on ADAMS and the prototype experiment is carried out. Findings The experiment results demonstrate that the robotic vehicle can surmount an obstacle 2.29 times the height of the wheel radius, which verifies the feasibility of this new configuration. Therefore, this vehicle has excellent uneven terrain adaptability. Originality/value This paper proposes a new configuration of an all-terrain robotic vehicle with four-swing arms. With simple mechanism and control algorithms, the vehicle has a high efficiency of surmounting an obstacle. It can surmount a vertical obstacle 2.29 times the height of the wheel radius.


Author(s):  
Hao Wang ◽  
GuoHua Gao ◽  
Qixiao Xia ◽  
Han Ren ◽  
LianShi Li ◽  
...  

Purpose The purpose of this paper is to present a novel stretch-retractable single section (SRSS) continuum manipulator which owns three degrees of freedom and higher motion range in three-dimension workspace than regular single continuum manipulator. Moreover, the motion accuracy was analyzed based on the kinematic model. In addition, the experiments were carried out for validation of the theory. Design/methodology/approach A kinematics model of the SRSS continuum manipulator is presented for analysis on bending, rotating and retracting in its workspace. To discuss the motion accuracy of the SRSS continuum manipulator, the dexterity theory was introduced based on the decomposing of the Jacobian matrix. In addition, the accuracy of motion is estimated based on the inverse kinematics and dexterity theory. To verify the presented theory, the motion of free end was tracked by an electromagnetic positioning system. According to the comparison of experimental value and theoretical analysis, the free end error of SRSS continuum manipulator is less than 6.24 per cent in the region with favorable dexterity. Findings This paper presents a new stretch-retractable continuum manipulator that the structure was composed of several springs as the backbone. Thus, the SRSS continuum manipulator could own wide motion range depending on its retractable structure. Then, the motion accuracy character of the SRSS continuum manipulator in the different regions of its workspace was obtained both theoretically and experimentally. The results show that the high accuracy region distributes in the vicinity of the outer boundary of the workspace. The motion accuracy gradually decreases with the motion position approaching to the center of its workspace. Research limitations/implications The presented SRSS continuum manipulator owns three degrees of freedom. The future work would be focused on the two-section structure which will own six degrees of freedom. Practical implications In this study, the SRSS continuum manipulator could be extended to six degrees of freedom continuum robot with two sections that is less one section than regular six degrees of freedom with three single section continuum manipulator. Originality/value The value of this study is to propose a SRSS continuum manipulator which owns three degrees of freedom and could stretch and retract to expend workspace, for which the accuracy in different regions of the workspace was analyzed and validated based on the kinematics model and experiments. The results could be feasible to plan the motion space of the SRSS continuum manipulator for keeping in suitable accuracy region.


2015 ◽  
Vol 6 (6) ◽  
pp. 677-688
Author(s):  
Kim C. Long ◽  
William S Duff ◽  
John W Labadie ◽  
Mitchell J Stansloski ◽  
Walajabad S Sampath ◽  
...  

Purpose – The purpose of this paper is to present a real world application of an innovative hybrid system reliability optimization algorithm combining Tabu search with an evolutionary algorithm (TSEA). This algorithm combines Tabu search and Genetic algorithm to provide a more efficient search method. Design/methodology/approach – The new algorithm is applied to an aircraft structure to optimize its reliability and maintain its structural integrity. For retrofitting the horizontal stabilizer under severe stall buffet conditions, a decision support system (DSS) is developed using the TSEA algorithm. This system solves a reliability optimization problem under cost and configuration constraints. The DSS contains three components: a graphical user interface, a database and several modules to provide the optimized retrofitting solutions. Findings – The authors found that the proposed algorithm performs much better than state-of-the-art methods such as Strength Pareto Evolutionary Algorithms on bench mark problems. In addition, the proposed TSEA method can be easily applied to complex real world optimization problem with superior performance. When the full combination of all input variables increases exponentially, the DSS become very efficient. Practical implications – This paper presents an application of the TSEA algorithm for solving nonlinear multi-objective reliability optimization problems embedded in a DSS. The solutions include where to install doublers and stiffeners. Compromise programming is used to rank all non-dominant solutions. Originality/value – The proposed hybrid algorithm (TSEA) assigns fitness based upon global dominance which ensures its convergence to the non-dominant front. The high efficiency of this algorithm came from using Tabu list to guidance the search to the Pareto-optimal solutions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hongxing Wang ◽  
LianZheng Ge ◽  
Ruifeng Li ◽  
Yunfeng Gao ◽  
Chuqing Cao

Purpose An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research also presents a motion optimization based on the 2-Norm of high-redundant mobile humanoid robots, in which a kinematic model is designed through the entire modeling. Design/methodology/approach The current study designs a highly redundant humanoid mobile robot with a differential mobile platform. The high-redundancy mobile humanoid robot consists of three modular parts (differential driving platform with two degrees of freedom (DOF), namely, left and right arms with seven DOF, respectively) and has total of 14 DOFs. Given the high redundancy of humanoid mobile robot, a kinematic model is designed through the entire modeling and an optimal solution extraction method based on 2-norm is proposed to solve the inverse kinematics multiple solutions problem. That is, the 2-norm of the angle difference before and after rotation is used as the shortest stroke index to select the optimal solution. The optimal solution of the inverse kinematics equation in the step is obtained by solving the minimum value of the objective function of a step. Through the step-by-step cycle in the entire tracking process, the kinematic optimization of the highly redundant humanoid robot in the entire tracking process is realized. Findings Compared with the before and after motion optimizations based on the 2-norm algorithm of the robot, its motion after optimization shows minimal fluctuation, improved smoothness, limited energy consumption and short path during the entire mobile tracking and operating process. Research limitations/implications In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot. Practical implications In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot. Social implications In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot. Originality/value Motion optimization based on the 2-norm of a highly redundant humanoid mobile robot with the entire modeling is performed on the basis of the entire modeling. This motion optimization can make the highly redundant humanoid mobile robot’s motion path considerably short, minimize energy loss and shorten time. These researches provide a theoretical basis for the follow-up research of the service robot, including tracking and operating target, etc. Finally, the motion optimization algorithm is verified by the tracking and operating behaviors of the robot and an example.


2018 ◽  
Vol 35 (8) ◽  
pp. 2775-2801 ◽  
Author(s):  
Fabian Andres Lara-Molina ◽  
Didier Dumur ◽  
Karina Assolari Takano

Purpose This paper aims to present the optimal design procedure of a symmetrical 2-DOF parallel planar robot with flexible joints by considering several performance criteria based on the workspace size, dynamic dexterity and energy of the control. Design/methodology/approach Consequently, the optimal design consists in determining the dimensional parameters to maximize the size of the workspace, maximize the dynamic dexterity and minimize the energy of the control action. The design criteria are derived from the kinematics, dynamics, elastodynamics and the position control law of the robot. The analysis of the design criteria is performed by means of the design space and atlases. Findings Finally, the multi-objective design optimization derived from the optimal design procedure is solved by using multi-objective genetic algorithms, and the results are analyzed to assess the validity of the proposed approach. Originality/value An alternative approach to the design of a planar parallel robot with flexible joints that permits determining the structural parameters by considering kinematic, dynamic and control operational performance.


2019 ◽  
Vol 40 (3) ◽  
pp. 387-397
Author(s):  
Junxia Jiang ◽  
Shenglin Zhang ◽  
Yuxiao He

Purpose The flexible automatic transportation and manual assembly jobs for large aircraft components demand an automated guided vehicle (AGV) system with heavy-duty capacity and omnidirectional movability. This paper aims to propose a four driving-steering wheels-four supporting-steering wheels (4DSW-4SSW) layout plan to enhance the controllability and moving stability of AGV. Design/methodology/approach The anti-vibration structure of DS wheels and high-torque steering mechanism of SS wheels with tapered rolling bearings are rigorously designed to meet the functional requirements. Based on the specific wheel layout and vehicle dynamics, the rotational kinematic model as well as the straight and rotational dynamic models of AGV are established by the authors. To well verify the motion characteristics of wheels under heavy load in three motion states including straight motion, self-rotation and rotation around a certain point, the simulations in ADAMS and factory experiments have all been conducted. Findings Simulation results indicate that normal and friction forces of DS wheels and SS wheels are very stable except for some small oscillations, which are caused by non-center load distribution on AGV. Experimental results on driving speed of AGV have directly demonstrated that its positioning accuracy is enough for use in real aircraft assembly lines. Practical implications The designed AGV system has been applied to the final assembly line of a certain aircraft in Aviation Industry Corporation of China, Ltd, whose assembly efficiency and flexibility have been significantly improved. Originality/value A new layout plan of wheels for an omnidirectional heavy-duty AGV is proposed, which enhances the operating and moving capacity of AGV. A function of human-machine collaboration is also offered by the AGV for transporting large workpieces intelligently and economically in aerospace and other heavy industries.


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


2021 ◽  
Vol 13 (9) ◽  
pp. 4681
Author(s):  
Khashayar Hamedi ◽  
Shahrbanoo Sadeghi ◽  
Saeed Esfandi ◽  
Mahdi Azimian ◽  
Hessam Golmohamadi

Growing concerns about global greenhouse gas emissions have led power systems to utilize clean and highly efficient resources. In the meantime, renewable energy plays a vital role in energy prospects worldwide. However, the random nature of these resources has increased the demand for energy storage systems. On the other hand, due to the higher efficiency of multi-energy systems compared to single-energy systems, the development of such systems, which are based on different types of energy carriers, will be more attractive for the utilities. Thus, this paper represents a multi-objective assessment for the operation of a multi-carrier microgrid (MCMG) in the presence of high-efficiency technologies comprising compressed air energy storage (CAES) and power-to-gas (P2G) systems. The objective of the model is to minimize the operation cost and environmental pollution. CAES has a simple-cycle mode operation besides the charging and discharging modes to provide more flexibility in the system. Furthermore, the demand response program is employed in the model to mitigate the peaks. The proposed system participates in both electricity and gas markets to supply the energy requirements. The weighted sum approach and fuzzy-based decision-making are employed to compromise the optimum solutions for conflicting objective functions. The multi-objective model is examined on a sample system, and the results for different cases are discussed. The results show that coupling CAES and P2G systems mitigate the wind power curtailment and minimize the cost and pollution up to 14.2% and 9.6%, respectively.


Sign in / Sign up

Export Citation Format

Share Document