Ergonomic layout optimization of a smart assembly workbench

2018 ◽  
Vol 38 (3) ◽  
pp. 314-322 ◽  
Author(s):  
Shi-qing Wu ◽  
Bin Shen ◽  
Yun-zhe Tang ◽  
Jia-hai Wang ◽  
Da-teng Zheng

Purpose The purpose of this paper is to study a method to optimize the arrangement of the devices on a smart assembly workbench, which help to reduce fatigue and improve efficiency for the worker. Design/methodology/approach The optimization priority is studied based on the users’ decisions, a mathematical model of the layout optimization is established from ergonomic perspective and an improved algorithm is adopted to solve the built the mathematical model. Findings Ergonomic software Jack is chosen to simulate the four layout schemes obtained. Through comparative analysis of the simulation results, it is proven that the optimal solution can be obtained using the improved algorithm. Originality/value The mathematical model built on observation comfort, operation comfort and device accessibility, as well as the improved algorithm in this paper, has some reference values for the layout design of smart assembly workbench.

Circuit World ◽  
2019 ◽  
Vol 45 (4) ◽  
pp. 231-256
Author(s):  
JiaRong Wang ◽  
XiaoQiang Chen

Purpose This paper aims to obtain a symmetrical step-down topology with lower equivalent capacity and wider step-down range under the condition of the same output. Three new symmetrical step-down topologies of zigzag autotransformer are proposed in this paper. Taking the equivalent capacity as the main parameter, the obtained topologies are modeled and analyzed in detail. Design/methodology/approach This paper adopts the research methods of design, modeling, analysis and simulation verification. First, the zigzag autotransformer is redesigned according to the design objective of symmetrical step-down topology. Second, the mathematical model of the designed topology is established, and the detailed theoretical analysis is carried out. Finally, the theoretical results are verified by simulation. Findings Three symmetrical zigzag autotransformer step-down topologies are designed, the winding configurations of the corresponding topology are presented, the step-down ranges of these three topologies are calculated and the influence of step-down ratio on equivalent capacity of autotransformer is analyzed. Through analysis, the target step-down topologies are obtained when the step-down ratio is [0.969, 1.414] and [1.414, 8]. Research limitations/implications Because the selected research object is only zigzag autotransformer, the research results may lack generality. Therefore, researchers are encouraged to further study topologies of other autotransformers. Practical implications This paper includes the implications of step-down ratio on the equivalent capacity of autotransformer and the configuration of transformer windings. Originality/value The topologies designed in this paper enable zigzag autotransformer to be applied in step-down circumstances.


2017 ◽  
Vol 37 (1) ◽  
pp. 130-134 ◽  
Author(s):  
Michael V. Vartanov ◽  
Leonarda V. Bojkova ◽  
Inna N. Zinina

Purpose The purpose of this paper is to define the conditions for a failsafe coupling of parts when using adaptation and low-frequency vibrations. A model enables us to determine the reaction at the contact points of parts and time-based contact conditions changes. Therefore, the conditions of jamming parts can be defined in the process of conjugation. Design/methodology/approach A mathematical model describing the trajectory of the part mass center in robotic assembly is created. An experimental equipment is also presented in the paper. Convergence of theoretical and experimental results that characterize the reliability of processes is estimated. Findings The mathematical model of the connection process dynamics is found in the form of Lagrange’s equations of the second kind. Originality/value Applying low-frequency vibration and the adaptive gripper is proposed to extend technological capabilities of robotic assembly.


2011 ◽  
Vol 31 (4) ◽  
pp. 358-362 ◽  
Author(s):  
Ryspek Usubamatov ◽  
K.W. Leong

PurposeThe purpose of this paper is to investigate theoretically the process of jamming in the peg‐hole type parts and to derive a mathematical model of jamming.Design/methodology/approachThe mathematical model of the jamming of the peg‐hole type parts in assembly process was performed and its boundary conditions, which lead to jamming, defined.FindingsThe equation of the critical angles of declination for the peg, which leads to the peg‐hole jam, was derived. The boundary condition of the angles of declination and the depth of the peg insertion into the hole were defined.Research limitations/implicationsA mathematical model is developed for rigid parts with a hole and for the peg clamped in the rigid assembly mechanisms. The research has not considered flexible deformations and stiffness of the assembly mechanisms, which result in the peg's declination in the assembly process.Practical implicationsThe results are represented in the form of the peg's critical angles of declination and critical depth of insertion into the hole, which leads to jamming of the peg‐hole type parts to be assembled. On the basis of the obtained results, it is possible to formulate the tolerances of the declination angles for the assembly mechanisms, which clamp the peg‐type parts.Originality/valueThe proposed method calculating the critical angles of the peg's declination and critical depth of the peg's insertion into the hole for assembly of the peg‐hole type parts, enables one to increase the reliability of the assembly process in the manufacturing industry.


2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


2015 ◽  
Vol 778 ◽  
pp. 259-263
Author(s):  
Fa Jun Zhang ◽  
Lin Zi Li ◽  
Hui Lin ◽  
Yin Lin Pu ◽  
Zhu Xin

Various uncertain factors affect the movement of the welding robot, thus welding gun tend to deviate from the theory of welding position which reduces the welding accuracy, of which the revolute pair clearance have an greater effect on the movement of the welding robot. In order to study the influence of revolute pair clearance to the end pose accuracy of welding robot, the mathematical model of revolute pair clearance was established, and the software SolidWorks was used for establishing the welding robot model, making simulations of the mechanical arm with joint clearance and no joint clearance. At last, the movement characteristic of the hinge shaft is attained. The simulation results showed that the shaft velocity and displacement of mechanical arm with joint clearance has a certain degree of fluctuation, which affecting the end pose accuracy of welding robot , and reducing the movement stability and the welding accuracy of welding robot.


2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shijie Dai ◽  
Shining Li ◽  
Wenbin Ji ◽  
Zhenlin Sun ◽  
Yufeng Zhao

Purpose This study aims to realize the constant force grinding of automobile wheel hub. Design/methodology/approach A force control strategy of backstepping + proportion integration differentiation (PID) is proposed. The grinding end effector is installed on the flange of the robot. The robot controls the position and posture of the grinding end actuator and the grinding end actuator controls the grinding force output. First, the modeling and analysis of the grinding end effector are carried out, and then the backstepping + PID method is adopted to control the grinding end effector to track the expected grinding force. Finally, the feasibility of the proposed method is verified by simulation and experiment. Findings The simulation and experimental results show that the backstepping + PID strategy can track the expected force quickly, and improve the dynamic response performance of the system and the quality of grinding and polishing of automobile wheel hub. Research limitations/implications The mathematical model is based on the pneumatic system and ideal gas, and ignores the influence of friction in the working process of the cylinder, so the mathematical model proposed in this study has certain limitations. A new control strategy is proposed, which is not only used to control the grinding force of automobile wheels, but also promotes the development of industrial control. Social implications The automatic constant force grinding of automobile wheel hub is realized, and the manpower is liberated. Originality/value First, the modeling and analysis of the grinding end effector are carried out, and then the backstepping + PID method is adopted to control the grinding end effector to track the expected grinding force. The nonlinear model of the system is controlled by backstepping method, and in the process, the linear system composed of errors is obtained, and then the linear system is controlled by PID to realize the combination of backstepping and PID control.


Author(s):  
Felipe Ribolla Masetti ◽  
Pedro Cardozo de Mello ◽  
Guilherme F. Rosetti ◽  
Eduardo A. Tannuri

This paper presents small-scale low-speed maneuvering tests with an oceanographic research vessel and the comparison with mathematical model using the real time maneuvering simulator developed by the University of São Paulo (USP). The tests are intended to verify the behavior of the vessel and the mathematical model under transient and low speed tests. The small-scale tests were conducted in deep and shallow waters, with a depth-draft ratio equal to 1.28, in order to verify the simulator ability to represent the vessel maneuverability on both depth conditions. The hydrodynamic coefficients used in the simulator model were obtained by CFD calculations and wind tunnel model tests carried out for this vessel. Standard turning circle and accelerating turn maneuvers were used to compare the experimental and numerical results. A fair agreement was achieved for shallow and deep water. Some differences were observed mainly in the initial phase of the accelerating turn test.


2019 ◽  
Vol 17 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Javad Riahi Zaniani ◽  
Shahab Taghipour Ghahfarokhi ◽  
Mehdi Jahangiri ◽  
Akbar Alidadi Shamsabadi

Purpose This paper, using energy softwares, designed of Iran and optimized a residential villa in Saman city located in Chaharmahal and Bakhtiari Province. Design/methodology/approach Having used the ideas of Climate Consultant software, the basic designing was conducted by Design Builder Software, and the cooling and heating loads and lighting tools and equipment were calculated. Then, the amount of consuming of heating, cooling and lighting load of the building was optimized through insulation of walls and ceiling, using green roof, double glazing UPVC windows, light intensity sensor and variable refrigerant flow (VRF) system. Findings Simulation results for the stated scenarios showed an annual reduction in energy consumption of 21.1, 7.9, 26.41, 27.3 and 72.3 per cent, respectively. Also, by combining all the five scenarios, an optimal state was achieved which, from the results, brought about an annual reduction of 86.9 per cent in the energy consumption. Originality/value The authors hope that the results of the current paper could be helpful for designers and engineers in reduction of energy consumption for designing a building in similar climatic conditions.


2021 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Asmaidi As Med ◽  
Resky Rusnanda

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .


Sign in / Sign up

Export Citation Format

Share Document