Influence of phytic acid on the corrosion behavior of carbon steel with different surface treatments

2018 ◽  
Vol 65 (6) ◽  
pp. 658-667 ◽  
Author(s):  
Yingjun Zhang ◽  
Baojie Dou ◽  
Yawei Shao ◽  
Xue-Jun Cui ◽  
Yanqiu Wang ◽  
...  

Purpose This paper aim to investigate the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments, and interpret the inhibition mechanism of PA on the steel with different surface treatments. Design/methodology/approach The influence of PA on the corrosion behavior of blast cleaned or rusty steel was investigated by means of electrochemical impedance spectroscopy (EIS). The EIS data were analyzed using the @ZsimpWin commercial software. The morphology and component of steel after immersion were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transformation infrared (FTIR) and X-ray diffractometer (XRD). Findings EIS analysis results indicated that PA had good corrosion inhibition for blast cleaned or rusty steel. SEM, EDS, FTIR and XRD further indicated that PA had two main corrosion inhibition processes for the corrosion inhibition of blast cleaned or rusty steel: corrosion dissolution and formation of protective barrier layers. Originality/value Most published works focus the attention only toward the effect of corrosion inhibitor for the clean metal surfaces. However, the surface condition of metal sometimes is unsatisfactory in the practical application of corrosion inhibitor, such as existing residual rust. Some studies also have shown that several corrosion inhibitors could be applied on partially rusted substrates. These inhibitors mainly include tannins and phosphoric acid, but not PA. Therefore, the authors investigated the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments in this paper.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yucong Ma ◽  
Mohd Talha ◽  
Qi Wang ◽  
Zhonghui Li ◽  
Yuanhua Lin

Purpose The purpose of this paper is to study systematically the corrosion behavior of AZ31 magnesium (Mg) alloy with different concentrations of bovine serum albumin (BSA) (0, 0.5, 1.0, 1.5, 2.0 and 5.0 g/L). Design/methodology/approach Electrochemical impedance spectroscopy and potential dynamic polarization tests were performed to obtain corrosion parameters. Scanning electrochemical microscopy (SECM) was used to analyze the local electrochemical activity of the surface film. Atomic force microscope (AFM), Scanning electron microscope-Energy dispersive spectrometer and Fourier transform infrared spectroscopy were used to determine the surface morphology and chemical composition of the surface film. Findings Experimental results showed the presence of BSA in a certain concentration range (0 to 2.0 g/L) has a greater inhibitory effect on the corrosion of AZ31, however, the presence of high-concentration BSA (5.0 g/L) would sharply reduce the corrosion resistance. Originality/value When the concentration of BSA is less than 2.0 g/L, the corrosion resistance of AZ31 enhances with the concentration. The adsorption BSA layer will come into being a physical barrier to inhibit the corrosion process. However, high-concentration BSA (5.0 g/L) will chelate with dissolved metal ions (such as Mg and Ni) to form soluble complexes, which increases the roughness of the surface and accelerates the corrosion process.


2019 ◽  
Vol 66 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Walid Belmaghraoui ◽  
Aimad Mazkour ◽  
Hicham Harhar ◽  
Mourad Harir ◽  
Souad El Hajjaji

Purpose This study aims to investigate the corrosion inhibition effect of extracted oil from Ziziphus lotus fruit on corrosion of C38 carbon steel in 5.5 M H3PO4 solution using potentiodynamic polarization and impedance techniques. Design/methodology/approach Oil composition was determined using gas chromatography, and the results showed that oleic and palmitic acids present approximately 84.0 per cent of its total chemical content. Electrochemical impedance spectroscopy (EIS) data were analyzed by adapting it to a well-developed electric circuit model. The inhibition efficiency of Z. lotus oil was calculated and compared using Tafel polarization and EIS. Findings Accordingly, the oil extract was found to act as an anodic type inhibitor. Furthermore, inhibition efficiency of Z. lotus oil extract increase with oil concentrations and achieve approximately 70.5 per cent at 3 g/L solution of Z. lotus oil. Originality/value The results obtained from different tested methods were in line, and the oil was able to reduce significantly the kinetics of the corrosion process of C38 carbon steel.


2015 ◽  
Vol 63 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Wilfrido Martinez-Molina ◽  
Andres Torres-Acosta ◽  
Rosalba Hernández-Leos ◽  
Elia Alonso-Guzman ◽  
Itzel Mendoza-Pérez ◽  
...  

Purpose – The purpose of this paper is to determine if a type of cactus mucilage, Opuntia ficus-indica (OFI), may act as a corrosion inhibitor for carbon steel in cement-based materials (mortar) exposed to chloride-laden environment. Design/methodology/approach – Mortar prisms, reinforced with carbon steel rods, were immersed in sodium chloride (NaCl) solution for five wet – dry cycles. The experimentation included electrochemical monitoring (corrosion potential, Ecorr, and polarization resistance, Rp) of carbon steel during the time of exposure until corrosion-induced cracking appeared at the mortar surface. Crack survey on the mortar prisms was performed. Carbon steel rods were retrieved from the mortar after crack survey and steel mass loss at the end of the experimental period was estimated. A comparison between the different mixtures was also performed. Findings – OFI mucilage did perform as a corrosion inhibitor of steel in chloride contaminated mortar. Research limitations/implications – The experimental program needs to be corroborated in concrete specimens with typical dimensions. The surface oxide/hydroxide formation of the carbon steel in contact with the OFI mucilage is still unknown; thus, electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD) analyses are needed. Practical implications – OFI mucilage is a suitable natural product that can be used to increase durability of concrete structures not only in countries where OFI cactus is produced, but also in many other countries where this plant is considered a plague. Originality/value – The new information obtained from this paper is the innovative use of a by-product of this cactus plant for construction industry applications.


2014 ◽  
Vol 61 (5) ◽  
pp. 300-306 ◽  
Author(s):  
B.P. Markhali ◽  
R. Naderi ◽  
M. Sayebani ◽  
M. Mahdavian

Purpose – The purpose of this paper is investigate the inhibition efficiency of three similar bi-cyclic organic compounds, namely, benzimidazole (BI), benzotriazole (BTAH) and benzothiazole (BTH) on carbon steel in 1 M hydrochloric acid (HCl) solution. Organic inhibitors are widely used to protect metals in acidic media. Among abundant suggestions for acid corrosion inhibitors, azole compounds have gained attention. Design/methodology/approach – The inhibition efficiency of the three organic compounds was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Findings – Superiorities of BTH and BTAH corrosion inhibitors were shown by EIS data and polarization curves. Moreover, the results revealed that BTAH and BTH can function as effective mixed-type adsorptive inhibitors, whereas no inhibition behavior was observed for BI. Both BTAH and BTH obeyed Longmuir adsorption isotherm. The results obtained from this isotherm showed that both inhibitors adsorbed on the specimen surface physically and chemically. The difference in inhibition efficiencies of BTAH, BTH and BI was related to the presence of nitrogen and sulfur hetero atoms on their molecular structures. Originality/value – This study evaluated inhibition efficiency of BI, BTAH and BTH using electrochemical methods. In addition, the study attempted to find inhibition mechanism of the inhibitors and to find modes of adsorption of the inhibitors, correlating effects of heteroatoms and inhibition efficiency.


2018 ◽  
Vol 65 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Mohd Rashid ◽  
Umesh S. Waware ◽  
Afidah A. Rahim ◽  
A.M.S. Hamouda

Purpose The purpose of this study is to compare the inhibitive effect of polyaniline (PAni) and N-cetyl-N,N,N trimethyl ammonium bromide (CTAB)-stabilized PAni in a hydrochloric acid (HCl) medium. Design/methodology/approach PAni has been deposited potentiodynamically on mild steel in the presence of CTAB as a stabilizing agent to achieve high corrosion inhibition performance by the polymer deposition. The corrosion inhibition studies of CTAB-stabilized PAni inhibitor in 0.1 M HCl acidic solution was carried out by electrochemical methods, namely, open-circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy technique. Findings The results of electrochemical studies have shown that the CTAB-stabilized PAni inhibitor has higher corrosion efficiency than PAni on mild steel in 0.1 M HCl solution. The maximum per cent efficiency evaluated using the potentiodynamic polarization method is approximately 91.9. Originality/value CTAB-stabilized PAni has never been studied as a corrosion inhibitor for mild steel in an acidic medium. The investigations demonstrate relatively the better corrosion inhibition efficiency and high dispersion of the polymer in the acidic medium.


2017 ◽  
Vol 64 (5) ◽  
pp. 555-562 ◽  
Author(s):  
J.Z. Liu ◽  
Jing Shun Cai ◽  
L. Shi ◽  
D. Zhao ◽  
C.C. Chen ◽  
...  

Purpose The purpose of this study is to investigate the inhibition efficiency and mechanism of a specific carboxylate corrosion inhibitor which consists of benzoic acid and dimethylethanolamine on steel surface. Design/methodology/approach The performance of carbon steel influenced by this organic inhibitor under different concentration of Cl− and immersion time was studied by linear polarization resistance and electrochemical impedance spectroscopy in a simulated concrete pore (SCP) solution. The surface morphology and composition of steel was also analyzed by optical microscopy, SEM and EDS to investigate the effect of inhibitor on the pattern of the steel surface after long-term immersion. Findings Carboxylate of benzoic acid and dimethylethanolamine can increase the chloride threshold level and decrease the corrosion area of carbon steel in SCP solution with 0.6 mol/L Cl− even after 120 days exposure. The inhibition mechanism of inhibitor lies in quick adsorption and buffering effect at initial time then formed deposited layer on steel surface after long-term immersion in chloride-rich environment. Originality/value It demonstrated that the carboxylate corrosion inhibitor not only can improve the chloride threshold level for carbon steel but also effectively decrease the corrosion rate even in chloride-rich SCP solution after long-term immersion, which is different form the conventional amino alcohol.


2018 ◽  
Vol 65 (1) ◽  
pp. 1-10
Author(s):  
Daoiya Zouied ◽  
Emna Zouaoui ◽  
Mohamed Salah Medjram ◽  
Olfa Chikha ◽  
Karima Dob

Purpose Corrosion and corrosion inhibition of alloyed zinc electrode were investigated in neutral chloride solution using electrochemical techniques. The purpose of this study is to study the corrosion inhibition of acetanilide and para hydroxy acetanilide as organics inhibitors for corrosion control of alloyed zinc electrode in NaCl 3 per cent solution. Design/methodology/approach A volt lab PGZ 301, assembled using alloyed zinc working electrode, a platinum counter electrode and a saturated calomel electrode as the reference electrode, was used in the experiment. This research was conducted using potentiodynamic polarization and electrochemical impedance spectroscopy techniques. Findings Acetanilide, para hydroxy acetanilide and their mixture provided inhibitions efficiencies of 88 per cent at 40 ppm, 87 per cent with 80 ppm and 99.86 per cent with (40 ppm AC + 80 ppm PHA), respectively. The study also discusses the corrosion inhibition mechanism of the protective layers. The adsorption of acetanilide and para hydroxy acetanilide on metal surface obeyed Langmuir’s adsorption isotherm. Polarization measurements showed that the acetanilide and the para hydroxy acetanilide, and their mixture acted as cathodic inhibitors in NaCl solution, and the inhibitor molecules followed physical adsorption on the surface of alloyed zinc. Originality/value The other new inhibitors which are very efficient inhibitors and to be applied in the field of prevention and control against corrosion.


2017 ◽  
Vol 64 (6) ◽  
pp. 634-643 ◽  
Author(s):  
Liqiang Zhao ◽  
Yanhua Zhu ◽  
Pingli Liu ◽  
Jian Zhang ◽  
Yigang Liu

Purpose This paper aims to describe the corrosion behavior and possibility of inhibition by corrosion inhibitor SA1-3 in acidizing solution (5 per cent hydrochloric acid [HCl] solution). The study aims to explain the mechanism of corrosion and inhibition of N80 steel in 5 per cent HCl solution to provide theoretical basis for expanding the range of application of N80 steel in acidification process. Design/methodology/approach This paper opted for a laboratory study using simulation of acidizing solution to do the experiments. The results of experiments including weight-loss method, electrochemical method and surface analysis were used to explain the mechanism of corrosion and inhibition so as to predict the dissolution progress of N80 steel in 5 per cent HCl solution with and without inhibitor SA1-3. Findings This paper provides theoretical insights about how to inhibit the corrosion behavior of N80 steel in 5 per cent HCl solution. It suggests that the corrosion inhibitor which can form a protective film on the steel surface should be used to expand the application of N80 steel in acidizing solution. The inhibitor SA1-3 is a kind of cathodic corrosion-controlling inhibitor which mainly inhibits cathode corrosion; it cannot change the corrosion mechanism of N80 steel. Originality/value This paper provides a theoretical basis for the corrosion behavior and inhibition mechanism of N80 steel in acidizing solution.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Qingchao Cheng ◽  
Guangsheng Cao ◽  
Congyu Sang ◽  
Yujie Bai ◽  
Dan Li ◽  
...  

Purpose This paper aims to clarify the corrosion inhibition effect of different corrosion inhibitor systems on the corrosion of metal pipe string by potassium persulfate plugging agent, so as to improve the injection capacity of polymer plugging well and reduce the corrosion of steel by oxidant plugging agent. Design/methodology/approach The effect of different corrosion inhibitors on the corrosion inhibition of N80 carbon steel in 1% potassium persulfate solution was studied by electrochemical experiment and weight loss experiment. The corrosion inhibition mechanism of potassium persulfate inhibitor and the synergistic mechanism among different inhibitors were analyzed. Findings The results indicated that when the temperature was 50°C, the inhibition effect of 0.2% sodium molybdate with a single inhibitor was the best at pH 8.5, and the inhibition rate was 70.17%. The inhibition efficiency of 0.2% sodium molybdate + 0.3% sodium silicate in the composite inhibition system can reach 94.38%. In the temperature range of 20°C–60°C, with the increase of system temperature, the inhibition effect of corrosion inhibitor will gradually weaken. Originality/value The corrosion inhibition system of N80 steel in potassium persulfate oxidant was mainly studied, and it clarified the influence of temperature and pH value on the corrosion inhibition effect, which provided guidance and suggestions for the corrosion inhibition of tubular string in the oilfield.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3270 ◽  
Author(s):  
Junlei Tang ◽  
Yuxin Hu ◽  
Zhongzhi Han ◽  
Hu Wang ◽  
Yuanqiang Zhu ◽  
...  

The corrosion inhibition performance of pyridine derivatives (4-methylpyridine and its quaternary ammonium salts) and sulfur-containing compounds (thiourea and mercaptoethanol) with different molar ratios on carbon steel in CO2-saturated 3.5 wt.% NaCl solution was investigated by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy, and scanning electron microscopy. The synergistic corrosion inhibition mechanism of mixed inhibitors was elucidated by the theoretical calculation and simulation. The molecules of pyridine derivative compounds with a larger volume has priority to adsorb on the metal surface, while the molecules of sulfur-containing compounds with a smaller volume fill in vacancies. A dense adsorption film would be formed when 4-PQ and sulfur-containing compounds are added at a proper mole ratio.


Sign in / Sign up

Export Citation Format

Share Document