Keeping twin turbocharged engine power at flight altitudes

2018 ◽  
Vol 90 (6) ◽  
pp. 906-913 ◽  
Author(s):  
Mohammad Reza Khodaparast ◽  
Mohsen Agha Seyed Mirza Bozorg ◽  
Saeid Kheradmand

Purpose The purpose of this paper is the selection and arrangement of turbochargers set for internal combustion engine which could keep engine power in an altitude of up to 12.2 km above sea level. Design/methodology/approach In the current research, the target engine, a one-dimensional four-stroke 1,600 cc piston engine has been simulated and the manufacturer’ results have been validated. Depending on engine size, three proper types of Garret turbochargers GT30, GT25 and GT20 were selected for this engine. Then, the engine and a combination of two turbochargers have been modeled one-dimensionally. A control system was used for regulation of different pressure ratios between the two turbochargers. Findings The parametric analysis shows that using the combination of GT20, GT30 turbochargers with a properly controlled pressure ratio leads to a constant output power with little changes at different altitudes which enable achieving an altitude of 12.2 km for the target engine. Practical implications Adaptation of the internal combustion engine with a twin turbocharger using one-dimensional modeling. Originality/value The one-dimensional analysis provided an overall picture of the effective performance of turbochargers functioning in different altitudes and loads. It presents a new method for adopting of turbochargers set with internal combustion engines for propulsion medium-altitude aircraft.

Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


2021 ◽  
Vol MA2021-03 (1) ◽  
pp. 35-35
Author(s):  
Rob Braun ◽  
Gus Floerchinger ◽  
David Wahlstrom ◽  
Neal P. Sullivan ◽  
Tyrone Vincent ◽  
...  

2021 ◽  
Author(s):  
Thiago Ebel ◽  
Mark Anderson ◽  
Parth Pandya ◽  
Mat Perchanok ◽  
Nick Tiney ◽  
...  

Abstract When developing a turbocharged internal combustion engine, the choice of turbocharger is usually based on designer experience and existing hardware. However, proper turbocharger design relies on matching the compressor and turbine performance to the engine requirements so that parameters such as boost and back pressure, compressor pressure ratio, and turbine inlet temperatures meet the needs of the engine without exceeding its allowable operating envelope. Therefore, the ultimate measure of a successful turbocharger design is how well it is matched to an engine across various operating conditions. This, in turn, determines whether a new turbocharger is required, or an existing solution can be used. When existing turbocharger solutions are not viable, the engine designer is at a loss on how to define a new turbocharger that meets the desired performance requirements. A common approach in industry has been to scale the performance of an existing turbocharger (compressor and turbine maps) and take these requirements for Original Equipment Manufacturers to possibly match it with a real machine. However, the assumptions made in a basic scaling process are quite simplistic and generally not satisfactory in this situation. A better approach would be to use a validated meanline model for a compressor and turbine instead, allowing to perform an actual preliminary design of such components. Such approach allows to link the engine performance requirements in a very early stage of te component design project and it guides the designer for the design decisions, such as rotor size, variable geometry nozzles, diameter, or shroud trims and others. Therefore, a feasible solution is more likely with design less iterations. This paper describes a methodology for an integrated approach to design and analyze a turbocharged internal combustion engine using commercially available state-of-the-art 1D gas dynamics simulation tool linked to two powerful turbomachinery meanline programs. The outputs of this analysis are detailed performance data of the engine and turbocharger at different engine operating conditions. Two case studies are then presented for a 10-liter diesel truck engine. The first study demonstrates how the programs are used to evaluate an existing engine and reverse engineer an existing turbocharger based only on the available performance maps. Then a second study is done using a similar approach but redesigning a new turbocharger (based on the reverse engineered one) for an increased torque output of the same engine.


2020 ◽  
Vol 6 (2) ◽  
pp. 146-151
Author(s):  
Ihor Holovach ◽  
◽  
Lidiia Kasha ◽  
Ivan Hudzii

The article analyses the modern lubrication systems for internal combustion engines. Systems with mechanical drive components that contain mechanical and electronic components have been found to have a number of disadvantages. In particular, when the internal combustion engine is started cold, when the viscosity of the oil is high, the hydrodynamic resistance characteristic rises sharply, which leads to high pressure at low speeds and the drive requires low pump speeds. Again, the increase in oil temperature causes a decrease in viscosity, the hydrodynamic resistance characteristic becomes flatter. This, in turn, reduces the pressure in the lubrication system and requires an increase in pump speed in order to keep the pressure constant. Based on the analysis, the requirements for lubrication systems are formulated and a separate lubrication system with forced oil supply is proposed in this paper. For the drive of pump lubrication system of the internal combustion engine, a switched reluctance motor is proposed and calculated. Such motor by its qualities is one of the most useful in this type of systems.


2019 ◽  
Vol 178 (3) ◽  
pp. 182-186
Author(s):  
Zbigniew SROKA ◽  
Maciej DWORACZYŃSKI

The modification of the downsizing trend of internal combustion engines towards rightsizing is a new challenge for constructors. The change in the displacement volume of internal combustion engines accompanying the rightsizing idea may in fact mean a reduction or increase of the defining swept volume change factors and thus may affect the change in the operating characteristics as a result of changes in combustion process parameters - a research problem described in this publication. Incidents of changes in the displacement volume were considered along with the change of the compression space and at the change of the geometric degree of compression. The new form of the mathematical dependence describing the efficiency of the thermodynamic cycle makes it possible to evaluate the opera-tion indicators of the internal combustion engine along with the implementation of the rightsizing idea. The work demonstrated the in-variance of cycle efficiency with different forms of rightsizing.


2021 ◽  
Vol 4 (30) ◽  
pp. 99-105
Author(s):  
A. V. Summanen ◽  
◽  
S. V. Ugolkov ◽  

This article discusses the issues of assessing the technical condition of the camshaft, internal combustion engine. The necessary parameters for assessing the technical condition of the engine camshaft have been determined. How and how to measure and calculate this or that parameter is presented in detail. Methods for calculating the parameters are presented. A scheme and method for measuring neck wear, determining the height of the cam, determining the beating of the central journal of the camshaft are proposed. The main defects of the camshafts are presented. The issues of the influence of these parameters on the operability of the camshaft and the internal combustion engine as a whole are considered.


2021 ◽  
pp. 13-20
Author(s):  

The prospects of using the gas-static suspension of the internal combustion engine piston in transport vehicles and power plants are considered. The diagram of the piston and the method for calculating the stiffness and bearing capacity of the gas layer surrounding the piston are presented, as well as the results of experiments that showed the relevance of this method. The possibility of gas and static centering of the engine piston is confirmed. Keywords: internal combustion engine, piston, gasstatic suspension, stiffness, bearing capacity, gas medium. [email protected]


Author(s):  
E.T. Plaksina ◽  
A.B. Syritsky ◽  
A.S. Komshin

The article considers the main methods of internal combustion engine diagnostics. A method based on measuring the time intervals between the phases of the working cycle of the mechanism is described. An algorithm for measuring the time intervals from the formulation of the problem to the proof of the efficiency of this method on an internal combustion engine has been determined. The installation of the angle sensor on the crankshaft of the experimental bench engine VAZ 21126 is shown. The basis for the construction of a mathematical model of the crankshaft is presented and the main factors influencing its movement are identified. A criterion has been established according to which the misfire is determined most accurately. The results obtained can be used for developing diagnostic systems for internal combustion engines, as well as engines operating in extreme conditions, for example, beyond the Arctic Circle, on ships, etc.


1993 ◽  
Vol 115 (4) ◽  
pp. 694-701 ◽  
Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Numerical simulation of flow, combustion, heat release rate, and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data show that for good agreement with experimental results on the peak pressure and the rate of pressure rise as a function of crank angle, spark ignition energy and local cylinder pressure must be properly modeled. The results obtained for NO and CO showed features which are qualitatively in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multicomponent chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


2018 ◽  
Vol 20 (4) ◽  
pp. 393-404 ◽  
Author(s):  
José Galindo ◽  
Roberto Navarro ◽  
Luis Miguel García-Cuevas ◽  
Daniel Tarí ◽  
Hadi Tartoussi ◽  
...  

Zero-dimensional/one-dimensional computational fluid dynamics codes are used to simulate the performance of complete internal combustion engines. In such codes, the operation of a turbocharger compressor is usually addressed employing its performance map. However, simulation of engine transients may drive the compressor to work at operating conditions outside the region provided by the manufacturer map. Therefore, a method is required to extrapolate the performance map to extended off-design conditions. This work examines several extrapolating methods at the different off-design regions, namely, low-pressure ratio zone, low-speed zone and high-speed zone. The accuracy of the methods is assessed with the aid of compressor extreme off-design measurements. In this way, the best method is selected for each region and the manufacturer map is used in design conditions, resulting in a zonal extrapolating approach aiming to preserve accuracy. The transitions between extrapolated zones are corrected, avoiding discontinuities and instabilities.


Sign in / Sign up

Export Citation Format

Share Document