Control of bearingless electric machines dedicated for aviation

2020 ◽  
Vol 92 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Mariusz Żokowski ◽  
Krzysztof Falkowski ◽  
Paulina Kurnyta-Mazurek ◽  
Maciej Henzel

Purpose The paper presents the results of work on control systems of bearingless electric motors. Authors proposed the applications of bearingless electric machines for aircraft actuation system. Suggested solution characterizes novel concept of on-board equipment design such as More Electric Aircraft. Magnetic suspension technology allows elimination of friction force and the negative performance features of classic bearing system. However, to achieve all these purposes appropriately, dedicated control system must be also applied. Design/methodology/approach The development of a control system of bearingless electric machine is presented in detail. Mathematical model and construction of induction bearingless motor are widely discussed. Then, proportional–integral-derivative controller algorithm designing for BEM control system was presented using the well pole placement method. Simulation model of BEM control system with use of Matlab-Simulink software was shown. Finally, experimental studies on laboratory stand were introduced. The paper presents design methodology of conventional and advanced control system of bearingless motor. Findings The presented concept of the bearingless electric machines could be applied in the on-board actuation system. During research, full control system of bearingless electric motor was designed and tested. This system consisted of two subsystems. The first responded for rotary speed stabilization and second one was designed for position control of the rotor in the air gap. Practical implications The presented concept of the bearingless electric machines could be applied in the on-board actuation system. During research, full control system of bearingless electric motor was designed and tested. This system consisted of two subsystems. The first responded for rotary speed stabilization and second one was designed for position control of the rotor in the air gap. Originality/value The idea of active magnetic suspension system will be implemented for aviation on technology readiness level V. The paper presents unique laboratory stand with bearingless electric motor and experimental studies. The stable time responses of designed control system were presented and discussed. In addition, preliminary considerations of advanced control system with robust controller were introduced as well.

Author(s):  
Branislav Ftorek ◽  
Milan Saga ◽  
Pavol Orsansky ◽  
Jan Vittek ◽  
Peter Butko

Purpose The main purpose of this paper is to evaluate the two energy saving position control strategies for AC drives valid for a wide range of boundary conditions including an analysis of their energy expenses. Design/methodology/approach For energy demands analysis, the optimal energy control based on mechanical and electrical losses minimization is compared with the near-optimal one based on symmetrical trapezoidal speed profile. Both control strategies respect prescribed maneuver time and define acceleration profile for preplanned rest-to-rest maneuver. Findings Presented simulations confirm lower total energy expenditures of energy optimal control if compared with near-optimal one, but the differences are only small due to the fact that two energy saving strategies are compared. Research limitations/implications Developed overall control system consisting of energy saving profile generator, pre-compensator and position control system respecting principles of field-oriented control is capable to track precomputed state variables precisely. Practical implications Energy demands of both control strategies are verified and compared to simulations and preliminary experiments. The possibilities of energy savings were confirmed for both control strategies. Originality/value Experimental verification of designed control structure is sufficiently promising and confirmed assumed energy savings.


2018 ◽  
Vol 42 (3) ◽  
pp. 628-640 ◽  
Author(s):  
Ersin Daş ◽  
İsmail İlker Delice ◽  
Murat Keleş

This study investigates a modified electromechanical actuator for a guided ammunition fin control system. This modification, which is required due to space limitations, is the use of an eccentric type inverted slider crank mechanism instead of a centric type inverted slider crank mechanism. Brushless DC motor-driven mechanism is modeled experimentally. Using the obtained model, the H∞ type robust position controller is synthesized in the simulation environment and applied to the real system in hardware in the loop tests. The effectiveness of the proposed mechanism and the performance of the synthesized robust position controller are verified by comparing the pre-determined performance requirements and the obtained tests results. It has been shown that for a constant volume, the eccentric type mechanism provides about a 7.6% reduction ratio advantage over the centric type mechanism.


Author(s):  
Daniel Dietz ◽  
Andreas Binder

AbstractA novel inverter supply for bearingless PM-synchronous motors with magnetic suspension allows the reduction of the number of power electronic switches. Hence, all six motional degrees of freedom of bearingless AC machines may be controlled via 3-phase inverter topologies. In this paper, instead of a bearingless motor consisting of two half motors, one bearingless motor with an additional radial active magnetic bearing is treated. Bearingless machines with cylindrical rotors in contrast to double cone rotors generate – apart from the electromagnetic torque – only radial magnetic forces. Hence, an axial magnetic bearing is used.For this bearing, there is no need for a feeding converter bridge as the bearing coil is fed by the zero-sequence current of the feeding 3-phase inverters. The bearing coil is placed between the two star points of the motor winding. The zero-sequence current amplitude is adjusted by the 3-phase inverters via pulse width modulation. The feasibility of this kind of axial position control is proven by simulation as well as with an experiment with a 1 kW prototype motor up to 60000 min−1.


Author(s):  
Hassan Dahmardeh ◽  
Mahmood Ghanbari ◽  
Seyed Mehdi Rakhtala

Purpose The purpose of this paper is to develop a combined control (CC) technique based on the direct torque control (DTC) strategy and vector control (VC) method, to improve the overall performance of a three-phase induction machine (TPIM) drives. Design/methodology/approach The proposed control scheme includes a table-based DTC strategy in connection with a proportional-integral-sliding mode controller and pulse width modulation switching strategy. The control system has merits of DTC technique such as simple structure, less dependent on machine parameters, fast dynamic response and merits of VC technique such as high accuracy and constant switching frequency. Findings To validate the effectiveness of the proposed control system, simulation and experimental studies are carried out for a 0.75 kW TPIM in different operating conditions. The achieved results show the superiority of the proposed method in terms of fast dynamics and simple structure compared to the VC strategy and low speed and torque ripples and constant switching frequency compared to the DTC method. Originality/value Compared to the conventional CC strategies, the control law of the proposed method is based on DTC theory and modulation is established based on VC. In other words, the variable switching frequency which is one of the main disadvantages of the conventional CC strategies is rectified using the proposed CC scheme.


2017 ◽  
Vol 34 (7) ◽  
pp. 2154-2167 ◽  
Author(s):  
Haitao Qi ◽  
Zilong Liu ◽  
Yan Lang

Purpose The symmetrical valve is usually used in the hydraulic servo control system to control the asymmetrical cylinder, but this system’s structure involves asymmetry, and so its dynamic characteristics are asymmetrical, which causes issues in the control system of symmetric response. The purpose of this paper is to achieve the aim of symmetric control. Design/methodology/approach In this paper, the authors proposed a method that combined wavelet neural network (WNN) and model reference adaptive control. The reference model determined the dynamic response that the system was expected to achieve, and the WNN adaptive control made the system follow the reference model to achieve the purpose of symmetric control. Findings The experimental results show that the method can achieve a more accurate symmetric control and position control compared with the solutions via the classical PID control. Originality/value The proposed combination of the WNN and the reference model can effectively compensate for the asymmetry of dynamic response of the asymmetric cylinder in forward and return directions, which can be extended to deal with other classes of applications.


1999 ◽  
Author(s):  
Paul Mayhan ◽  
K. Srinivasan ◽  
Sarawoot Watechagit ◽  
G. Washington

Abstract The dynamic model of a commercially available piezoelectric actuation system intended for use in a machine tool position control system is presented, and its fidelity to observed behavior evaluated. The components of the actuation system are presented and an available nonlinear dynamic model form for piezoelectric actuators, capable of representing actuator hysteresis, used as the basis for the system dynamic model. Parameters in the dynamic model are obtained from manufacturer’s specifications. The resulting actuator model is combined with a nonlinear model of the amplifier, the resulting system model forming the basis of a SIMULINK simulation. System responses based on the simulation are compared with experimentally measured responses. The agreement between simulation and experimental responses is reasonably good at low frequencies, and the model is used for preliminary closed loop position control system evaluations. Specific recommendations for improvement in model accuracy are also made.


2021 ◽  
pp. 107754632110139
Author(s):  
Parivash Soleimanian ◽  
Hamid Ahmadian

Guideways accommodate tool or workpiece translations, and their dynamic behavior and associated sliding effects have great impact on the precision, stability, and performance of the machine tool. During machining, guideway rollers experience oscillatory excitations because of cutting forces, which necessitate considering their pre-sliding behavior along with the sliding characteristics to compensate for the associated tracking errors using the position control system. This study considers friction effects in pre-sliding and sliding regimes of lubricated linear roller guideway systems to provide an accurate dynamic model of the machine tool element. To model the dynamic characteristics of frictional contact in the lubricated linear roller guideway, the LuGre model, commonly used in the machine tool positioning control system to estimate the compensating drive force, is modified considering the roller-raceway contact physics and the lubricant film dynamics. The proposed model also includes coupling effects between normal and tangential forces in the contact interface. Experimental studies were performed on a lubricated linear roller guideway to verify the performance of the presented modified LuGre model. In the experimental observations, the dynamic behavior of friction in the lubricated linear guideway is well illustrated. A comparison of the experimentally measured data and proposed modified LuGre model predictions shows the model can accurately predict dynamic behaviors of the frictional contact interface.


Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Sign in / Sign up

Export Citation Format

Share Document