ABC analysis using Particle Swarm Optimization and its performance evaluation with other models

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kathirvel Selvaraju ◽  
Punniyamoorthy Murugesan

PurposeThe purpose of this article is to develop a cost-effective model for Multi-Criteria ABC Inventory Classification and to measure its performance in comparison to the other existing models.Design/methodology/approachParticle Swarm Optimization (PSO) algorithm is exclusively designed for Multi-Criteria ABC Inventory Classification wherein the inventory is classified based on the objective of cost minimization, which is achieved through the inventory performance index – total relevant cost. Effectiveness of classification of the proposed model and the other classification models toward two inventory performance measures, that is, cost and inventory turnover has been computed, and the results of all models are relatively compared by arriving at the cumulative performance score of each model.FindingsThis study reveals that the ABC Inventory classification based on the proposed PSO approach is more effective toward cost and inventory turnover ratio in comparison to the twenty existing models.Practical implicationsThe proposed model can be easily adapted to the industrial requirement of inventory classification by cost as objective as well as other inventory management performance measures.Originality/valueThe conceptual model is more versatile which can be adapted for various objectives and the effectiveness of classification in comparison to the other models can be measured toward each objective as well as combining all the objectives.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Narinder Singh ◽  
S.B. Singh ◽  
Essam H. Houssein ◽  
Muhammad Ahmad

Purpose The purpose of this study to investigate the effects and possible future prediction of COVID-19. The dataset considered in this study to investigate the effects and possible future prediction of COVID-19 is constrained as follows: age, gender, systolic blood pressure, HDL-cholesterol, diabetes and its medication, does the patient suffered from heart disease or took anti-cough agent food or sensitive to cough related issues and any other chronic kidney disease, physical contact with foreign returns and social distance for the prediction of the risk of COVID-19. Design/methodology/approach This work implemented a meta-heuristic algorithm on the aforementioned dataset for possible analysis of the risk of being infected with COVID-19. The authors proposed a simple yet effective Risk Prediction through Nature Inspired Hybrid Particle Swarm Optimization and Sine Cosine Algorithm (HPSOSCA), particle swarm optimization (PSO), and sine cosine algorithm (SCA) algorithms. Findings The simulated results on different cases discussed in the dataset section reveal which category of individuals may happen to have the disease and of what level. The experimental results reveal that the proposed model can predict the percentage of risk with an overall accuracy of 88.63%, sensitivity (87.23%), specificity (89.02%), precision (69.49%), recall (87.23%), f_measure (77.36%) and Gmean (88.12%) with 41 and 146 true positive and negative, 18 and 6 false positive and negative cases, respectively. The proposed model provides a quite stable prediction of risk for COVID-19 on different categories of individuals. Originality/value The work for the very first time developed a novel HPSOSCA model based on PSO and SCA for the prediction of COVID-19 disease. The convergence rate of the proposed model is too high as compared to the literature. It also produces a better accuracy in a computationally efficient fashion. The obtained outputs are as follows: accuracy (88.63%), sensitivity (87.23%), specificity (89.02%), precision (69.49%), recall (87.23%), f_measure (77.36%), Gmean (88.12%), Tp (41), Tn (146), Fb (18) and Fn (06). The recommendations to reduce disease outbreaks are as follow: to control this epidemic in various regions, it is important to appropriately manage patients suspected of having the disease, immediately identify and isolate the source of infection, cut off the transmission route and prevent viral transmission from these potential patients or virus carriers.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1213
Author(s):  
Ahmed Aljanad ◽  
Nadia M. L. Tan ◽  
Vassilios G. Agelidis ◽  
Hussain Shareef

Hourly global solar irradiance (GSR) data are required for sizing, planning, and modeling of solar photovoltaic farms. However, operating and controlling such farms exposed to varying environmental conditions, such as fast passing clouds, necessitates GSR data to be available for very short time intervals. Classical backpropagation neural networks do not perform satisfactorily when predicting parameters within short intervals. This paper proposes a hybrid backpropagation neural networks based on particle swarm optimization. The particle swarm algorithm is used as an optimization algorithm within the backpropagation neural networks to optimize the number of hidden layers and neurons used and its learning rate. The proposed model can be used as a reliable model in predicting changes in the solar irradiance during short time interval in tropical regions such as Malaysia and other regions. Actual global solar irradiance data of 5-s and 1-min intervals, recorded by weather stations, are applied to train and test the proposed algorithm. Moreover, to ensure the adaptability and robustness of the proposed technique, two different cases are evaluated using 1-day and 3-days profiles, for two different time intervals of 1-min and 5-s each. A set of statistical error indices have been introduced to evaluate the performance of the proposed algorithm. From the results obtained, the 3-days profile’s performance evaluation of the BPNN-PSO are 1.7078 of RMSE, 0.7537 of MAE, 0.0292 of MSE, and 31.4348 of MAPE (%), at 5-s time interval, where the obtained results of 1-min interval are 0.6566 of RMSE, 0.2754 of MAE, 0.0043 of MSE, and 1.4732 of MAPE (%). The results revealed that proposed model outperformed the standalone backpropagation neural networks method in predicting global solar irradiance values for extremely short-time intervals. In addition to that, the proposed model exhibited high level of predictability compared to other existing models.


2021 ◽  
pp. 1-17
Author(s):  
J. Shobana ◽  
M. Murali

Text Sentiment analysis is the process of predicting whether a segment of text has opinionated or objective content and analyzing the polarity of the text’s sentiment. Understanding the needs and behavior of the target customer plays a vital role in the success of the business so the sentiment analysis process would help the marketer to improve the quality of the product as well as a shopper to buy the correct product. Due to its automatic learning capability, deep learning is the current research interest in Natural language processing. Skip-gram architecture is used in the proposed model for better extraction of the semantic relationships as well as contextual information of words. However, the main contribution of this work is Adaptive Particle Swarm Optimization (APSO) algorithm based LSTM for sentiment analysis. LSTM is used in the proposed model for understanding complex patterns in textual data. To improve the performance of the LSTM, weight parameters are enhanced by presenting the Adaptive PSO algorithm. Opposition based learning (OBL) method combined with PSO algorithm becomes the Adaptive Particle Swarm Optimization (APSO) classifier which assists LSTM in selecting optimal weight for the environment in less number of iterations. So APSO - LSTM ‘s ability in adjusting the attributes such as optimal weights and learning rates combined with the good hyper parameter choices leads to improved accuracy and reduces losses. Extensive experiments were conducted on four datasets proved that our proposed APSO-LSTM model secured higher accuracy over the classical methods such as traditional LSTM, ANN, and SVM. According to simulation results, the proposed model is outperforming other existing models.


Sensor Review ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 304-311 ◽  
Author(s):  
Pengfei Jia ◽  
Fengchun Tian ◽  
Shu Fan ◽  
Qinghua He ◽  
Jingwei Feng ◽  
...  

Purpose – The purpose of the paper is to propose a new optimization algorithm to realize a synchronous optimization of sensor array and classifier, to improve the performance of E-nose in the detection of wound infection. When an electronic nose (E-nose) is used to detect the wound infection, sensor array’s optimization and parameters’ setting of classifier have a strong impact on the classification accuracy. Design/methodology/approach – An enhanced quantum-behaved particle swarm optimization based on genetic algorithm, genetic quantum-behaved particle swarm optimization (G-QPSO), is proposed to realize a synchronous optimization of sensor array and classifier. The importance-factor (I-F) method is used to weight the sensors of E-nose by its degree of importance in classification. Both radical basis function network and support vector machine are used for classification. Findings – The classification accuracy of E-nose is the highest when the weighting coefficients of the I-F method and classifier’s parameters are optimized by G-QPSO. All results make it clear that the proposed method is an ideal optimization method of E-nose in the detection of wound infection. Research limitations/implications – To make the proposed optimization method more effective, the key point of further research is to enhance the classifier of E-nose. Practical implications – In this paper, E-nose is used to distinguish the class of wound infection; meanwhile, G-QPSO is used to realize a synchronous optimization of sensor array and classifier of E-nose. These are all important for E-nose to realize its clinical application in wound monitoring. Originality/value – The innovative concept improves the performance of E-nose in wound monitoring and paves the way for the clinical detection of E-nose.


2014 ◽  
Vol 4 (1) ◽  
pp. 48 ◽  
Author(s):  
Abdorrahman Haeri ◽  
Kamran Rezaie ◽  
Seyed Morteza Hatefi

In recent years, integration between companies, suppliers or organizational departments attracted much attention. Decision making about integration encounters with major concerns. One of these concerns is which units should be integrated and what is the effect of integration on performance measures. In this paper the problem of decision making unit (DMU) integration is considered. It is tried to integrate DMUs so that the considered criteria are satisfied. In this research two criteria are considered that are mean of efficiencies of DMUs and the difference between DMUs that have largest and smallest efficiencies. For this purpose multi objective particle swarm optimization (MOPSO) is applied. A case with 17 DMUs is considered. The results show that integration has increased both considered criteria effectively.  Additionally this approach can presents different alternatives for decision maker (DM) that enables DM to select the final decision for integration.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Angelo Marcio Oliveira Sant’Anna

PurposeE-waste management can reduce relevant impact of the business activity without affecting reliability, quality or performance. Statistical process monitoring is an effective way for managing reliability and quality to devices in manufacturing processes. This paper proposes an approach for monitoring the proportion of e-waste devices based on Beta regression model and particle swarm optimization. A statistical process monitoring scheme integrating residual useful life techniques for efficient monitoring of e-waste components or equipment was developed.Design/methodology/approachAn approach integrating regression method and particle swarm optimization algorithm was developed for increasing the accuracy of regression model estimates. The control chart tools were used for monitoring the proportion of e-waste devices from fault detection of electronic devices in manufacturing process.FindingsThe results showed that the proposed statistical process monitoring was an excellent reliability and quality scheme for monitoring the proportion of e-waste devices in toner manufacturing process. The optimized regression model estimates showed a significant influence of the process variables for both individually injection rate and toner treads and the interactions between injection rate, toner treads, viscosity and density.Originality/valueThis research is different from others by providing an approach for modeling and monitoring the proportion of e-waste devices. Statistical process monitoring can be used to monitor waste product in manufacturing. Besides, the key contribution in this study is to develop different models for fault detection and identify any change point in the manufacturing process. The optimized model used can be replicated to other Electronic Industry and allows support of a satisfactory e-waste management.


Author(s):  
Smita Parija ◽  
Sudhansu Sekhar Singh ◽  
Swati Swayamsiddha

Location management is a very critical and intricate problem in wireless mobile communication which involves tracking the movement of the mobile users in the cellular network. Particle Swarm Optimization (PSO) is proposed for the optimal design of the cellular network using reporting cell planning (RCP) strategy. In this state-of-the-art approach, the proposed algorithm reduces the involved total cost such as location update and paging cost for the location management issue. The same technique is proved to be a competitive approach to different existing test network problems showing the efficacy of the proposed method through simulation results. The result obtained is also validated for real network data obtained from BSNL, Odisha. Particle Swarm Optimization is used to find the optimal set of reporting cells in a given cellular network by minimizing the location management cost. This RCP technique applied to this cost minimization problem has given improved result as compared to the results obtained in the previous literature.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yanyan Wang ◽  
Baiqing Sun

Efficiency and fairness are two important goals of disaster rescue. However, the existing models usually unilaterally consider the efficiency or fairness of resource allocation. Based on this, a multiobjective emergency resource allocation model that can balance efficiency and fairness is proposed. The object of the proposed model is to minimize the total allocating costs of resources and the total losses caused by insufficient resources. Then the particle swarm optimization is applied to solve the model. Finally, a computational example is conducted based on the emergency relief resource allocation after Ya’an earthquake in China to verify the applicability of the proposed model.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5609 ◽  
Author(s):  
Shahab S. Band ◽  
Saeid Janizadeh ◽  
Subodh Chandra Pal ◽  
Asish Saha ◽  
Rabin Chakrabortty ◽  
...  

This study aims to evaluate a new approach in modeling gully erosion susceptibility (GES) based on a deep learning neural network (DLNN) model and an ensemble particle swarm optimization (PSO) algorithm with DLNN (PSO-DLNN), comparing these approaches with common artificial neural network (ANN) and support vector machine (SVM) models in Shirahan watershed, Iran. For this purpose, 13 independent variables affecting GES in the study area, namely, altitude, slope, aspect, plan curvature, profile curvature, drainage density, distance from a river, land use, soil, lithology, rainfall, stream power index (SPI), and topographic wetness index (TWI), were prepared. A total of 132 gully erosion locations were identified during field visits. To implement the proposed model, the dataset was divided into the two categories of training (70%) and testing (30%). The results indicate that the area under the curve (AUC) value from receiver operating characteristic (ROC) considering the testing datasets of PSO-DLNN is 0.89, which indicates superb accuracy. The rest of the models are associated with optimal accuracy and have similar results to the PSO-DLNN model; the AUC values from ROC of DLNN, SVM, and ANN for the testing datasets are 0.87, 0.85, and 0.84, respectively. The efficiency of the proposed model in terms of prediction of GES was increased. Therefore, it can be concluded that the DLNN model and its ensemble with the PSO algorithm can be used as a novel and practical method to predict gully erosion susceptibility, which can help planners and managers to manage and reduce the risk of this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document