Generating IFC models from heterogeneous data using semantic web

2015 ◽  
Vol 15 (2) ◽  
pp. 219-235 ◽  
Author(s):  
Ebrahim Karan ◽  
Javier Irizarry ◽  
John Haymaker

Purpose – This paper aims to develop a framework to represent semantic web query results as Industry Foundation Class (IFC) building models. The subject of interoperability has received considerable attention in the construction literature in recent years. Given the distributed, semantically heterogeneous data sources, the problem is to retrieve information accurately and with minimal human intervention by considering their semantic descriptions. Design/methodology/approach – This paper provides a framework to translate semantic web query results into the XML representations of IFC schema and data. Using the concepts and relationships in an IFC schema, the authors first develop an ontology to specify an equivalent IFC entity in the query results. Then, a mapping structure is defined and used to translate and fill all query results into an ifcXML document. For query processing, the proposed framework implements a set of predefined query mappings between the source schema and a corresponding IFC output schema. The resulting ifcXML document is validated with an XML schema validating parser and then loaded into a building information modeling (BIM) authoring tool. Findings – The research findings indicate that semantic web technology can be used, accurately and with minimal human intervention, to maintain semantic-level information when transforming information between web-based and BIM formats. The developed framework for representing IFC-compatible outputs allows BIM users to query and access building data at any time over the web from data providers. Originality/value – Currently, the results of semantic web queries are not supported by BIM authoring tools. Thus, the proposed framework utilizes the capabilities of semantic web and query technologies to transform the query results to an XML representation of IFC data.

2021 ◽  
Vol 13 (10) ◽  
pp. 1889
Author(s):  
Junxiang Zhu ◽  
Peng Wu

The development of a smart city and digital twin requires the integration of Building Information Modeling (BIM) and Geographic Information Systems (GIS), where BIM models are to be integrated into GIS for visualization and/or analysis. However, the intrinsic differences between BIM and GIS have led to enormous problems in BIM-to-GIS data conversion, and the use of City Geography Markup Language (CityGML) has further escalated this issue. This study aims to facilitate the use of BIM models in GIS by proposing using the shapefile format, and a creative approach for converting Industry Foundation Classes (IFC) to shapefile was developed by integrating a computer graphics technique. Thirteen building models were used to validate the proposed method. The result shows that: (1) the IFC-to-shapefile conversion is easier and more flexible to realize than the IFC-to-CityGML conversion, and (2) the computer graphics technique can improve the efficiency and reliability of BIM-to-GIS data conversion. This study can facilitate the use of BIM information in GIS and benefit studies working on digital twins and smart cities where building models are to be processed and integrated in GIS, or any other studies that need to manipulate IFC geometry in depth.


2021 ◽  
Vol 10 (6) ◽  
pp. 362
Author(s):  
Junxiang Zhu ◽  
Peng Wu

Previous geo-referencing approaches for building information modeling (BIM) models can be problematic due to: (a) the different interpretations of the term ‘geo-referencing’, (b) the insufficient consideration of the placement hierarchy of the industry foundation classes (IFCs), and (c) the misunderstanding that a common way to embed spatial reference information for IFC is absent. Therefore, the objective of this study is to (1) clarify the meaning of geo-referencing in the context of BIM/GIS data integration, and (2) develop a common geo-referencing approach for IFC. To achieve the goal, a systematic and thorough investigation into the IFC standard was conducted to assess the geo-referencing capability of IFC. Based on the investigation, a geo-referencing approach was established using IFC entities that are common in different IFC versions, which makes the proposed approach common to IFC. Such a geo-referencing approach supports automatic geo-referencing that would facilitate the use of BIM models in GIS, e.g., for the construction of digital twins.


i-com ◽  
2017 ◽  
Vol 16 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Patrick Tutzauer ◽  
Susanne Becker ◽  
Norbert Haala

AbstractWhile the generation of geometric 3D virtual models has become feasible to a great extent, the enrichment of the resulting urban building models with semantics remains an open research question in the field of geoinformation and geovisualisation. This additional information is not only valuable for applications like Building Information Modeling (BIM) but also offers possibilities to enhance the visual insight for humans when interacting with that kind of data. Depending on the application, presenting users the highest level of detail of building models is often neither the most informative nor feasible way. For example when using mobile apps, resources and display sizes are quite limited. A concrete use case is the imparting of building use types in urban scenes to users. Within our preliminary work, user studies helped to identify important features for the human ability to associate a building with its correct usage type. In this work we now embed this knowledge into building category-specific grammars to automatically modify the geometry of a building to align its visual appearance to its underlying use type. If the building category for a model is not known beforehand, we investigate its feature space and try to derive its use type from there. Within the context of this work, we developed a Virtual Reality (VR) framework that gives the user the possibility to switch between different building representation types while moving in the VR world, thus enabling us in the future to evaluate the potential and effect of the grammar-enhanced building model in an immersive environment.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Cheng Gong ◽  
Hongyu Xu ◽  
Feng Xiong ◽  
Jian Zuo ◽  
Na Dong

Purpose Some papers have investigated the complex factors impacting building information modeling (BIM) application in prefabricated buildings (PBs), but few paid attention to their interaction relationships. Ignoring the fact that different factors are not isolated may lead to some key factors being overlooked without appropriate improvement strategies being proposed. This paper aims to analyze those factors and their inter-relationships, with the view to identify the critical factors and their interaction relationships so as to derive constructive strategies that would effectively facilitate BIM adoption in Chinese prefabrication. Design/methodology/approach First, factors influencing BIM application in prefabrication are extracted and collated by literature review, expert interview and analysis of PBs characteristics. Thereafter, an evaluation laboratory (decision-making trial and evaluation laboratory) and interpretive structural modeling are used to explore the relationships and hierarchy among the factors. Based on the degree of cause and centrality, critical factors are extracted and the interaction relationship are investigated. Findings The results show that BIM policies and standards for PBs are the main causal factors. The maturity of BIM software and BIM data interface for PBs, willingness to share data, the strategic goals of the enterprise, BIM law and BIM input and benefit are the main transitional factors while BIM staff and workflow, enterprise attitude, distribution of BIM liability and cooperation of participants are the main direct factors. Originality/value Based on the above findings, corresponding improvement strategies are proposed so as to promote BIM application in prefabrication and the rapid development of China’s PBs efficiently.


2018 ◽  
Vol 16 (5) ◽  
pp. 750-766 ◽  
Author(s):  
Solomon Olusola Babatunde ◽  
Damilola Ekundayo ◽  
Olubola Babalola ◽  
Jumoke Aduramigba Jimoh

Purpose Building information modeling (BIM) inclusion in education pedagogy is crucial in preparing skilled graduates for employment in the construction industry. Against this backdrop, studies on BIM education abound in architecture, engineering and construction (AEC) programmes in higher education institutions (HEIs). However, there are limited empirical studies on BIM potentials in the quantity surveying (QS) profession in HEIs, particularly in developing countries. The purpose of this study is to identify and assess the BIM drivers and benefits as important to the QS profession using an empirical approach. Design/methodology/approach A comprehensive literature review was conducted to identify the BIM drivers and benefits in relation to the QS profession, which was used to design a questionnaire. To capture a broad perception, a questionnaire survey was carried out which targeted the academia and final year undergraduate students from two selected universities offering QS honour degree programmes in Nigeria. Data collected were analysed using mean score, standard deviation and Mann–Whitney test. Findings The study identified 12 BIM drivers in relation to the QS profession and the analysis of the ranking revealed that almost all the identified BIM drivers are considered by respondents as important. The study further identified 14 BIM benefits and the analysis of the ranking indicated that all the identified BIM benefits are considered as important. The results of the Mann–Whitney test indicated a slight statistically significant difference, particularly in one of the selected universities on the ranking of the BIM drivers and benefits as important to the QS profession. Practical implication The findings of the study provide empirical evidence on the current perceptions of the drivers and benefits of BIM to QS academia and students as they explore the concept for the advancement of QS profession. Originality/value This study would provide practical insights to use BIM for QS practice. Also, this study would contribute to improving the QS graduates and professional quantity surveyors understanding of the BIM knowledge applicable to QS profession.


2021 ◽  
Vol 13 (22) ◽  
pp. 4727
Author(s):  
Junxiang Zhu ◽  
Peng Wu ◽  
Chimay Anumba

Using solid building models, instead of the surface models in City Geography Markup Language (CityGML), can facilitate data integration between Building Information Modeling (BIM) and Geographic Information System (GIS). The use of solid models, however, introduces a problem of model simplification on the GIS side. The aim of this study is to solve this problem by developing a framework for generating simplified solid building models from BIM. In this framework, a set of Level of Details (LoDs) were first defined to suit solid building models—referred to as s-LoD, ranging from s-LoD1 to s-LoD4—and three unique problems in implementing s-LoDs were identified and solved by using a semantics-based approach, including identifying external objects for s-LoD2 and s-LoD3, distinguishing various slabs, and generating valid external walls for s-LoD2 and s-LoD3. The feasibility of the framework was validated by using BIM models, and the result shows that using semantics from BIM can make it easier to convert and simplify building models, which in turn makes BIM information more practical in GIS.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Marzouk ◽  
Heba Elsaay ◽  
Ayman Ahmed Ezzat Othman

PurposeThis research is built up upon exploring the concepts of building information modeling (BIM) adoption and strategy formulation with the aim to develop a strategy for implementing BIM in the Egyptian construction industry.Design/methodology/approachThe development of the BIM implementation strategy was based on two pillars, namely the literature review and results of the survey questionnaire and interviews. First, the review of literature helped investigating the BIM challenges and international strategies developed to implement BIM worldwide.FindingsThe research presented recommendations to assist policymakers in Egypt to facilitate BIM implementation.Originality/valueAlthough multiple frameworks have been proposed to aid in BIM implementation, a practical strategy to implement BIM in Egypt is still lacking. Moreover, current market scale studies neglect nonsoftware aspects of BIM adoption, do not identify market gaps or reflect market-specific criteria. As such, it cannot be used by policymakers to facilitate BIM diffusion.


2019 ◽  
Vol 19 (3) ◽  
pp. 321-342 ◽  
Author(s):  
Timothy Oluwatosin Olawumi ◽  
Daniel W.M. Chan

Purpose The increasing urbanization of the built environment has bolstered the need to promote green Building Information Modeling (BIM) initiative in new construction projects and the rehabilitation of old premises. This study aims to explore and examine the key benefits of the implementation of BIM and sustainability practices in the built environment. Design/methodology/approach The study gathered the worldwide perceptions of 220 survey participants from 21 countries which were analyzed using descriptive and inferential analytical methods. The identified individual benefits of green BIM were further categorized into their underlying clusters using factor analysis. Findings The key benefits are related to enhancing project efficiency and productivity, ensuring real-time sustainable design and multi-design alternatives, facilitating the selection of sustainable materials and components, together with reducing material wastage and project’s environmental impact, among others. The study analyzed and compared the perceptions of the diverse groups of the respondents as well. Practical implications Effective blueprints and insightful recommendations for enhancing the various stakeholders’ capacities to implement green BIM in their construction projects were put forward to achieve the aim of sustainable smart urbanization. Originality/value The study identified salient benefits of the adoption of BIM and sustainability practices. The proper integration of these concepts and the execution of the recommended useful strategies by construction stakeholders, policymakers and local authorities will enable the built environment to reap the gains of its implementation.


2019 ◽  
Vol 26 (4) ◽  
pp. 648-667 ◽  
Author(s):  
Øystein Mejlænder-Larsen

Purpose Traditionally, progress in detail engineering in construction projects is reported based on estimates and manual input from the disciplines in the engineering team. Reporting progress on activities in an engineering schedule manually, based on subjective evaluations, is time consuming and can reduce accuracy, especially in larger and multi-disciplinary projects. How can progress in detail engineering be reported using BIM and connected to activities in an engineering schedule? The purpose of this paper is to introduce a three-step process for reporting progress in detail engineering using building information modeling (BIM) to minimize manual reporting and increase quality and accuracy. Design/methodology/approach The findings of this paper are based on the studies of experiences from the execution of projects in the oil and gas industry. Data are collected from an engineering, procurement and construction (EPC) contractor and two engineering contractors using case study research. Findings In the first step, control objects in building information models are introduced. Statuses are added to control objects to fulfill defined quality levels related to milestones. In the second step, the control objects with statuses are used to report visual progress and aggregated in an overall progress report. In the third step, overall progress from building information models are connected to activities in an engineering schedule. Originality/value Existing research works related to monitoring and reporting progress using a BIM focus on construction and not on detail engineering. The research demonstrates that actual progress in detail engineering can be visualized and reported through the use of BIM and extracted to activities in an engineering schedule through a three-step process.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shuangliang Tai ◽  
Yao Zhang ◽  
Ting Li

Purpose The purpose of this paper is to promote the application of building information modeling (BIM) in China’s construction industry, key factors and their relationships are explored. Design/methodology/approach Based on a literature review, 28 factors were extracted and their relationships (239 in total) obtained using the Delphi method. A social network model of the factors was constructed and factors were analyzed using social network analysis (SNA). Findings The top 10 key factors and their relationships were obtained using SNA. Among the top 10 critical factors, six were source factors. They were: training for the application of BIM, guidance from experts, proper management modes, efficient BIM teams, specifications and demonstrations and standards for building information communication. The other four factors included as follows: a willingness to accept BIM, knowledge of its value and benefits, the definition of its benefits and the availability of IT software and hardware. These were mediating factors that could further the influence of the source factors. Originality/value The results provide useful information for public agencies and professionals to understand the immediate and mediating influences of the factors on the application of BIM. Solutions and future efforts for different participants are presented to promote the application of BIM-based on the key factors and their relationships.


Sign in / Sign up

Export Citation Format

Share Document