An innovative strategy to create equivalent elements for modelling assembly points in joined structures

2014 ◽  
Vol 31 (3) ◽  
pp. 453-466 ◽  
Author(s):  
Maxime Bérot ◽  
Julien Malrieu ◽  
François Bay

Purpose – Large structures (e.g. plane, bridge, etc.) often include several hundreds of assembly points. Structural computations often use over-simplistic approximations for these points; among others, they do not take into account the thermo-mechanical history due to the assembling process. Running computations with each assembly point modelled completely would require too much time to achieve a simulation. There is thus a need to create equivalent elements for assembly points in order to: take into account the mechanical state of the assembly point in the design stage – while reducing the computational time cost at the same time. This paper aims to discuss these issues. Design/methodology/approach – This paper introduces an innovative strategy based on a coupling procedure between a finite element tool for modelling the assembly process in order to access to the mechanical state of the assembly point and an optimisation algorithm, in order to identify the equivalent element parameters. Findings – The strategy has proven to be successful. A connector model easier to use and much faster than the complete model, has been obtained. Results obtained with this element are in good agreement with experimental tests in the case of multipoint assemblies and with the simulation results of the complete numerical model. Finally the connector model appears to be easier to use and much faster than the complete model, more difficult to model properly. Originality/value – The main innovative aspects of this strategy lie in the fact that the creation of this equivalent element is based on a complete numerical approach. The thermo-mechanical history due to the assembly process is considered – the element parameters are identified thanks to an evolution strategy based on the coupling between a finite element model and a zero-order minimisation algorithm.

2020 ◽  
Vol 72 (5) ◽  
pp. 687-693
Author(s):  
Liuqing Yang ◽  
Ming Hu ◽  
Deming Zhao ◽  
Jing Yang ◽  
Xun Zhou

Purpose The purpose of this paper is to develop a novel method for analyzing wheel-rail (W-R) contact using thermo-mechanical measurements and study the effects of heating on the characteristics of W-R contact under different creepages. Design/methodology/approach This study developed an implicit-explicit finite element (FE) model which could solve both partial slip and full sliding problems by setting different angular velocities on the wheels. Based on the model, four material types under six different creepages were simulated. Findings The results showed that frictional heating significantly affected the residual stress distribution under large creepage conditions. As creepage increased, the temperature of the wheel tread and rail head rose and the peak value was located at the trailing edge of the contact patch. Originality/value The proposed FE model could reduce computational time and thus cost to about one-third of the amount commonly found in previous literature. Compared to other studies, these results are in good agreement and offer a reasonable alternative method for analyzing W-R contact under various conditions. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2019-0298


2021 ◽  
Vol 11 (5) ◽  
pp. 2428
Author(s):  
Matteo Carbonieri ◽  
Nicola Bianchi

This paper deals with a complete finite-element analysis procedure for squirrel cage induction motors, including the presence of skewing and the iron losses evaluation. The machine is analyzed performing only magneto-static finite element analyses. Saturation phenomena are carefully considered in any operating condition, avoiding long time-stepping analyses. The synergy between analytical and finite element model leads to a rapid and precise estimation of the rotor induced current, saving computational time. Furthermore, the procedure proposed in this paper allows the motor performance to be directly derived, without the preliminary knowledge of the machine equivalent circuit. In order to complete the analysis, skewing effect is included, using the 2-D multi-slice technique, based on static simulations. Experimental tests are carried out and reported in order to verify analysis results.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Buen Zhang ◽  
Noor H. Jabarullah ◽  
Ayad F. Alkaim ◽  
Svetlana Danshina ◽  
Irina V. Krasnopevtseva ◽  
...  

Purpose This paper aims to establish a more accurate model for lifetime estimation. Design/methodology/approach Finite element model simulation and experimental tests are used to enhance the lifetime prediction model of the solder joint. Findings A more precise model was found. Originality/value It is confirmed that the paper is original.


2012 ◽  
Vol 190-191 ◽  
pp. 381-384 ◽  
Author(s):  
Hua Han Liu ◽  
Wei Jiang

In this paper, the hydraulic-bulging assembly process for the stator and can is simulated by using ABAQUS/Explicit. Five different models of the stator and can component were developed. The processing parameters are analyzed and compared based on the simulation results. The simplified model with higher precision and less computational time is attained and will be used in the future process optimization.


2021 ◽  
Vol 11 (4) ◽  
pp. 1482
Author(s):  
Róbert Huňady ◽  
Pavol Lengvarský ◽  
Peter Pavelka ◽  
Adam Kaľavský ◽  
Jakub Mlotek

The paper deals with methods of equivalence of boundary conditions in finite element models that are based on finite element model updating technique. The proposed methods are based on the determination of the stiffness parameters in the section plate or region, where the boundary condition or the removed part of the model is replaced by the bushing connector. Two methods for determining its elastic properties are described. In the first case, the stiffness coefficients are determined by a series of static finite element analyses that are used to obtain the response of the removed part to the six basic types of loads. The second method is a combination of experimental and numerical approaches. The natural frequencies obtained by the measurement are used in finite element (FE) optimization, in which the response of the model is tuned by changing the stiffness coefficients of the bushing. Both methods provide a good estimate of the stiffness at the region where the model is replaced by an equivalent boundary condition. This increases the accuracy of the numerical model and also saves computational time and capacity due to element reduction.


Author(s):  
Kevin Darques ◽  
Abdelmounaïm Tounzi ◽  
Yvonnick Le-menach ◽  
Karim Beddek

Purpose This paper aims to go deeper on the analysis of the shaft voltage of large turbogenerators. The main interest of this study is the investigation process developed. Design/methodology/approach The analysis of the shaft voltage because of several defects is based on a two-dimensional (2D) finite element modeling. This 2D finite element model is used to determine the shaft voltage because of eccentricities or rotor short-circuit. Findings Dynamic eccentricities and rotor short circuit do not have an inherent impact on the shaft voltage. Circulating currents in the stator winding because of defects impact the shaft voltage. Originality/value The original value of this paper is the investigation process developed. This study proposes to quantify the impact of a smooth stator and then to explore the contribution of the real stator winding on the shaft voltage.


2009 ◽  
Vol 419-420 ◽  
pp. 89-92
Author(s):  
Zhuo Yi Yang ◽  
Yong Jie Pang ◽  
Zai Bai Qin

Cylinder shell stiffened by rings is used commonly in submersibles, and structure strength should be verified in the initial design stage considering the thickness of the shell, the number of rings, the shape of ring section and so on. Based on the statistical techniques, a strategy for optimization design of pressure hull is proposed in this paper. Its central idea is that: firstly the design variables are chosen by referring criterion for structure strength, then the samples for analysis are created in the design space; secondly finite element models corresponding to the samples are built and analyzed; thirdly the approximations of these analysis are constructed using these samples and responses obtained by finite element model; finally optimization design result is obtained using response surface model. The result shows that this method that can improve the efficiency and achieve optimal intention has valuable reference information for engineering application.


2019 ◽  
Vol 71 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Shixian Xu ◽  
Zhengtao Su ◽  
Jian Wu

Purpose This paper aims to research the influence of pressure, friction factors, roughness and actuating speed to the mixed lubrication models of outstroke and instroke. Design/methodology/approach Mixed lubrication model is solved by finite volume method, which consists of coupled fluid mechanics, deformation mechanics and contact mechanics analyses. The influence of friction factor on the finite element model is also considered. Then, contact pressure, film thickness, friction and leakage have been studied. Findings It was found that the amount of leakage is sensitive to the film thickness. The larger the film thickness is, the greater the influence received from the friction factor, however, the effect of oil film on the friction is negligible. The friction is determined mainly by the contact pressure. The trend of friction and leakage influenced by actuating velocity and roughness is also obtained. Originality/value The influence of friction factor on the finite element model is considered. This can make the calculation more accurate.


2021 ◽  
Vol 309 ◽  
pp. 01214
Author(s):  
M.V.N Mohan ◽  
Ramesh Bhagat Atul ◽  
Vijay Kumar Dwivedi

Carbon/Carbon composites finds its applications in several high temperature applications in the field of Space, Aviation etc. Designing of components or sub systems with carbon/carbon composites is a challenging task. It requires prediction of elastic properties with a very high accuracy. The prediction can be normally done by analytical, numerical or experimental methods. At the design stage the designers resort to numerical predictions as the experimental methods are not feasible during design stage. Analytical methods are complex and difficult to implement. The designers use numerical methods for prediction of elastic properties using Finite Element Modeling (FEM). The spatial distribution of fibers in matrix has an effect on results of prediction of elastic constants. The generation of random spatial distribution of fibers in representative volume element (RVE) challenging. The present work is aimed at study of effect of spatial distribution of fiber in numerical prediction of elastic properties of unidirectional carbon/carbon composites. MATLAB algorithm is used to generate the spatial distribution of fibers in unidirectional carbon/carbon composites. The RVE elements with various random fiber distributions are modeled using numerical Finite element Model using ABAQUS with EasyPBC plugin. The predicted elastic properties have shown significant variation to uniformly distributed fibers.


Author(s):  
Nickolas Viahopoulos ◽  
Edward V. Shalis ◽  
Michael A. Latcha

Abstract During the design stage of ground vehicles it is important to reduce the noise emitted from structural components. In commercial applications the reduction of the interior noise for passenger comfort is a concern with increased significance. In military applications noise radiated from the exterior of the vehicle is of primary importance for the survivability of the vehicle. Numerical acoustic prediction software can be used during the design stage to predict and reduce the radiated noise. Two formulations, the Rayleigh integral equation1 and the direct boundary element method2,3 were implemented into software for acoustic prediction. The developed code can accept information from a finite element model with a known input forcing function. Specifically, the predicted velocities on the structural surfaces can be used as input to the acoustic code for predicting the noise emitted from a vibrating structure. Computation of acoustic sensitivities4 was also implemented in the code. This information can identify the portions of the boundary that effect the radiated noise most, and it can be used in an optimization process to reduce the noise radiated from a vibrating structure.


Sign in / Sign up

Export Citation Format

Share Document