Turbulent flow with nonequilibrium chemical reaction in single snorkel RH

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shifu Chen ◽  
Hong Lei ◽  
Meng Wang ◽  
Changyou Ding ◽  
Weixue Dou ◽  
...  

Purpose The reported mathematical models of gas–liquid flow in single snorkel Rheinstahl–Heraeus (SSRH) are based on the assumption of steady Ar-molten steel flow. The purpose of this paper is to develop a mathematical model to describe the unsteady turbulent flow (CO-Ar-molten steel) with nonequilibrium decarburization reaction. Design/methodology/approach On the base of the finite volume method, the computational fluid dynamics software CFX is used to predict the unsteady fluid flow, the spatial distributions of CO/argon gas and carbon element. The water model experiment and the industrial experiment are carried out to verify the mathematical models. Findings A two-way coupling model (T-WCM) based on algebraic slip model is developed to investigate the coupling phenomena. The related results show that T-WCM is more rigorous and accurate than one-way coupling model in predicting carbon content of molten steel. The amount of CO gas, which can enhance turbulent flow and mass transfer, is about three times the argon gas blown into SSRH. Originality/value CO gas is the key factor in investigating the transport phenomena. This study fully reveals the truth about the unsteady gas-liquid flow in SSRH. It is necessary to adopt T-WCM based on algebraic slip model to describe the CO-Ar-molten steel flow phenomenon.

2018 ◽  
Vol 35 (6) ◽  
pp. 2386-2402 ◽  
Author(s):  
Ming Liu ◽  
Shan Cao ◽  
Shuliang Cao

Purpose The modeling of interphase forces plays a significant role in the numerical simulation of gas–liquid flow in a rotodynamic multiphase pump, which deserves detailed study. Design/methodology/approach Numerical analysis is conducted to estimate the influence of interphase forces, including drag force, lift force, virtual mass force, wall lubrication force and turbulent dispersion force. Findings The results show that the magnitude of the interphase forces can be sorted by: drag force > virtual mass force > lift force > turbulent dispersion force > wall lubrication force. The relations between interphase forces and velocity difference of gas–liquid flow and also the interphase forces and gas volume fraction are revealed. The distribution characteristics of interphase forces in the passages from impeller inlet to diffuser outlet are illustrated and analyzed. According to the results, apart from the drag force, the virtual mass force, lift force and turbulent dispersion force are required, whereas wall lubrication force can be neglected for numerical simulation of gas–liquid flow in a rotodynamic multiphase pump. Compared with the conventional numerical method which considers drag force only, the relative errors of predicted pressure rise and efficiency based on the proposed numerical method in account of four major forces can be reduced by 4.95 per cent and 3.00 per cent, respectively. Originality value The numerical analysis reveals the magnitude and distribution of interphase forces inside multiphase pump, which is meaningful for the simulation and design of multiphase pump.


Author(s):  
Zhuang Li ◽  
Engang Wang ◽  
Yu Xu ◽  
Lin Xu

Purpose To effectively control the molten steel flow and the stability of free surface in continuous casting mould, this paper aims to propose a new type electromagnetic brake technique, namely, vertical electromagnetic brake (V-EMBr). Its brake effect under special processing parameters such as submerged entry nozzle (SEN) depth and port angle is evaluated by the numerical simulation methods. Design/methodology/approach A couple three-dimensional mathematical model of fluid flow and static magnetic field was developed to investigate the behaviour of molten steel flow and steel/slag interface in the continuous casting mould, and a volume of fluid model is used to track the interfacial behaviour of molten steel and liquid slag by solving the continuity equation of the phase volume fraction. Findings The simulation results showed that the application of V-EMBr can significantly reduce the flow intensity in upper recirculation zone and decrease the meniscus height and the flow velocity of molten steel in the vicinity of narrow side of mould, which is beneficial to reduce the possibility of mould flux entrapment. Especially, the brake effect of V-EMBr has a little affected by the SEN depth and port angle, which is helpful for V-EMBr to better adapt the actual continuous casting process. Originality/value Compared to the conventional-level EMBr, the new proposed V-EMBr has the advantage to effectively control the molten steel flow and steel/slag interfacial fluctuation in the vicinity of narrow side of mould with a pair of magnetic fields, and its brake effect is less affected by the changes in continuous casting processing parameters.


Sensor Review ◽  
2015 ◽  
Vol 35 (2) ◽  
pp. 200-209 ◽  
Author(s):  
Adriana Bonilla Riaño ◽  
Antonio Carlos Bannwart ◽  
Oscar M.H. Rodriguez

Purpose – The purpose of this paper is to study a multiphase-flow instrumentation for film thickness measurement, especially impedance-based, not only for gas–liquid flow but also for mixtures of immiscible and more viscous substances such as oil and water. Conductance and capacitive planar sensors were compared to select the most suitable option for oil – water dispersed flow. Design/methodology/approach – A study of techniques for measurement of film thickness in oil – water pipe flow is presented. In the first part, some measurement techniques used for the investigation of multiphase flows are described, with their advantages and disadvantages. Next, examinations of conductive and capacitive techniques with planar sensors are presented. Findings – Film thickness measurement techniques for oil–water flow are scanty in the literature. Some techniques have been used in studies of annular flow (gas–liquid and liquid–liquid flows), but applications in other flow patterns were not encountered. The methods based on conductive or capacitive measurements and planar sensor are promising solutions for measuring time-averaged film thicknesses in oil–water flows. A capacitive system may be more appropriate for oil–water flows. Originality/value – This paper provides a review of film thickness measurements in pipes. There are many reviews on gas – liquid flow measurement but not many about liquid – liquid flow.


Sensor Review ◽  
2016 ◽  
Vol 36 (3) ◽  
pp. 287-302 ◽  
Author(s):  
Chiew Loon Goh ◽  
Ruzairi Abdul Rahim ◽  
Mohd Hafiz Fazalul Rahiman

Purpose The purpose of this paper is to conduct a review of types of tomographic systems that have been widely researched within the past 10 years. Decades of research on non-invasively and non-intrusively visualizing and monitoring gas-liquid multi-phase flow in process plants in making sure that the industrial system has high quality control. Process tomography is a developing measurement technology for industrial flow visualization. Design/methodology/approach A review of types of tomographic systems that have been widely researched especially in the application of gas-liquid flow within the past 10 years was conducted. The sensor system operating fundamentals and assessment of each tomography technology are discussed and explained in detail. Findings Potential future research on gas-liquid flow in a conducting vessel using ultrasonic tomography sensor system is addressed. Originality/value The authors would like to undertake that the above-mentioned manuscript is original, has not been published elsewhere, accepted for publication elsewhere or under editorial review for publication elsewhere and that my Institute’s Universiti Teknologi Malaysia representative is fully aware of this submission.


2010 ◽  
Vol 41 (4) ◽  
pp. 465-478 ◽  
Author(s):  
S. I. Shtork ◽  
Sergei Alekseenko ◽  
V. L. Okulov ◽  
P. A. Kuibin

Sign in / Sign up

Export Citation Format

Share Document