Influence of different brine water salinity on mechanical properties of fly ash-based geopolymer cement

2018 ◽  
Vol 9 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Syahrir Ridha ◽  
Afif Izwan Abd Hamid ◽  
Che Ku Afiza Hanim Che Ku Mazuan
2021 ◽  
Vol 13 (2) ◽  
pp. 873
Author(s):  
Numanuddin M. Azad ◽  
S.M. Samindi M.K. Samarakoon

There has been a significant movement in the past decades to develop alternative sustainable building material such as geopolymer cement/concrete to control CO2 emission. Industrial waste contains pozzolanic minerals that fulfil requirements to develop the sustainable material such as alumino-silicate based geopolymer. For example, industrial waste such as red mud, fly ash, GBFS/GGBS (granulated blast furnace slag/ground granulated blast furnace slag), rice husk ash (RHA), and bagasse ash consist of minerals that contribute to the manufacturing of geopolymer cement/concrete. A literature review was carried out to study the different industrial waste/by-products and their chemical composition, which is vital for producing geopolymer cement, and to discuss the mechanical properties of geopolymer cement/concrete manufactured using different industrial waste/by-products. The durability, financial benefits and sustainability aspects of geopolymer cement/concrete have been highlighted. As per the experimental results from the literature, the cited industrial waste has been successfully utilized for the synthesis of dry or wet geopolymers. The review revealed that that the use of fly ash, GBFS/GGBS and RHA in geopolymer concrete resulted high compressive strength (i.e., 50 MPa–70 MPa). For high strength (>70 MPa) achievement, most of the slag and ash-based geopolymer cement/concrete in synergy with nano processed waste have shown good mechanical properties and environmental resistant. The alkali-activated geopolymer slag, red mud and fly ash based geopolymer binders give a better durability performance compared with other industrial waste. Based on the sustainability indicators, most of the geopolymers developed using the industrial waste have a positive impact on the environment, society and economy.


2020 ◽  
Vol 998 ◽  
pp. 317-322
Author(s):  
Teewara Suwan ◽  
Boontarika Paphawasit ◽  
Peerapong Jitsangiam ◽  
Prinya Chindaprasirt

Portland cement (OPC) is one of the primary contributors accounted for climate change as a massive amount of Carbon dioxide is emitted to the atmosphere during its production processes. Geopolymer cement (GP), a green construction material, is therefore promoted to be an alternative cementitious binder to replace the consumption of that OPC. GP can be synthesized by mixing pozzolanic wastes (e.g., fly ash or slag) with alkaline solutions (e.g., NaOH and Na2SiO3). The mechanical properties of the geopolymer have been confirmed to be similar to or even better than OPC in the same testing conditions. However, the researches on GP have been mostly carrying out in just a laboratory scale, thus, the Laboratory grade of alkaline activators was commonly used. To make GP more realistic in practical works, the Industrial grade of alkaline activators was hence introduced. The results show that the usage of Industrial grade activators not only provides excellent mechanical properties to GP but also reduces its unit price to less than 20 percent of the conventional GP (GP with Laboratory-grade activator). By this approach, the confidence of expanding this green construction material, from Laboratory scale to In-field applications, is considerably increased.


2019 ◽  
Vol 23 (9) ◽  
pp. 3875-3888 ◽  
Author(s):  
Anant Lal Murmu ◽  
Anamika Jain ◽  
Anjan Patel

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2694 ◽  
Author(s):  
Shansuo Zheng ◽  
Lihua Niu ◽  
Pei Pei ◽  
Jinqi Dong

In order to evaluate the deterioration regularity for the mechanical properties of brick masonry due to acid rain corrosion, a series of mechanical property tests for mortars, bricks, shear prisms, and compressive prisms after acid rain corrosion were conducted. The apparent morphology and the compressive strength of the masonry materials (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), the shear behavior of the masonry, and the compression behavior of the masonry were analyzed. The resistance of acid rain corrosion for the cement-lime mortar prisms was the worst, and the incorporation of fly ash into the cement mortar did not improve the acid rain corrosion resistance. The effect of the acid rain corrosion damage on the mechanical properties for the brick was significant. With an increasing number of acid rain corrosion cycles, the compressive strength of the mortar prisms, and the shear and compressive strengths of the brick masonry first increased and then decreased. The peak stress first increased and then decreased whereas the peak strain gradually increased. The slope of the stress-strain curve for the compression prisms gradually decreased. Furthermore, a mathematical degradation model for the compressive strength of the masonry material (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), as well as the shear strength attenuation model and the compressive strength attenuation model of brick masonry after acid rain corrosion were proposed.


Author(s):  
Ng Hui-Teng ◽  
Heah Cheng-Yong ◽  
Liew Yun-Ming ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kong Ern Hun ◽  
...  

Author(s):  
Anjaneya Babu Padavala ◽  
Malasani Potharaju ◽  
Venkata Ramesh Kode

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 495
Author(s):  
Mingkai Zhou ◽  
Xu Cheng ◽  
Xiao Chen

The stability of steel-slag road materials remains a critical issue in their utilization as an aggregate base course. In this pursuit, the present study was envisaged to investigate the effects of fly ash on the mechanical properties and expansion behavior of cement-fly-ash-stabilized steel slag. Strength tests and expansion tests of the cement-fly-ash-stabilized steel slag with varying additions of fly ash were carried out. The results indicate that the cement-fly-ash-stabilized steel slag exhibited good mechanical properties. The expansion rate and the number of bulges of the stabilized material reduced with an increase in the addition. When the addition of fly ash was 30–60%, the stabilized material was not damaged due to expansion. Furthermore, the results of X-CT, XRD and SEM-EDS show that fly ash reacted with the expansive component of the steel slag. In addition, the macro structure of the stabilized material was found to be changed by an increase in the concentration of the fly ash, in order to improve the volumetric stability. Our study shows that the cement-fly-ash-stabilized steel slag exhibits good mechanical properties and volumetric stability with reasonable additions of fly ash.


Sign in / Sign up

Export Citation Format

Share Document