Enhanced Data Stream Classification by Optimized Weight Updated Meta-learning: Continuous learning-based on Concept-Drift

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Maisnam Niranjan Singh ◽  
Samitha Khaiyum

Purpose The aim of continuous learning is to obtain and fine-tune information gradually without removing the already existing information. Many conventional approaches in streaming data classification assume that all arrived new data is completely labeled. To regularize Neural Networks (NNs) by merging side information like user-provided labels or pair-wise constraints, incremental semi-supervised learning models need to be introduced. However, they are hard to implement, specifically in non-stationary environments because of the efficiency and sensitivity of such algorithms to parameters. The periodic update and maintenance of the decision method is the significant challenge in incremental algorithms whenever the new data arrives. Design/methodology/approach Hence, this paper plans to develop the meta-learning model for handling continuous or streaming data. Initially, the data pertain to continuous behavior is gathered from diverse benchmark source. Further, the classification of the data is performed by the Recurrent Neural Network (RNN), in which testing weight is adjusted or optimized by the new meta-heuristic algorithm. Here, the weight is updated for reducing the error difference between the target and the measured data when new data is given for testing. The optimized weight updated testing is performed by evaluating the concept-drift and classification accuracy. The new continuous learning by RNN is accomplished by the improved Opposition-based Novel Updating Spotted Hyena Optimization (ONU-SHO). Finally, the experiments with different datasets show that the proposed learning is improved over the conventional models. Findings From the analysis, the accuracy of the ONU-SHO based RNN (ONU-SHO-RNN) was 10.1% advanced than Decision Tree (DT), 7.6% advanced than Naive Bayes (NB), 7.4% advanced than k-nearest neighbors (KNN), 2.5% advanced than Support Vector Machine (SVM) 9.3% advanced than NN, and 10.6% advanced than RNN. Hence, it is confirmed that the ONU-SHO algorithm is performing well for acquiring the best data stream classification. Originality/value This paper introduces a novel meta-learning model using Opposition-based Novel Updating Spotted Hyena Optimization (ONU-SHO)-based Recurrent Neural Network (RNN) for handling continuous or streaming data. This is the first work utilizes a novel meta-learning model using Opposition-based Novel Updating Spotted Hyena Optimization (ONU-SHO)-based Recurrent Neural Network (RNN) for handling continuous or streaming data.

Author(s):  
Surenthiran Krishnan ◽  
Pritheega Magalingam ◽  
Roslina Ibrahim

<span>This paper proposes a new hybrid deep learning model for heart disease prediction using recurrent neural network (RNN) with the combination of multiple gated recurrent units (GRU), long short-term memory (LSTM) and Adam optimizer. This proposed model resulted in an outstanding accuracy of 98.6876% which is the highest in the existing model of RNN. The model was developed in Python 3.7 by integrating RNN in multiple GRU that operates in Keras and Tensorflow as the backend for deep learning process, supported by various Python libraries. The recent existing models using RNN have reached an accuracy of 98.23% and deep neural network (DNN) has reached 98.5%. The common drawbacks of the existing models are low accuracy due to the complex build-up of the neural network, high number of neurons with redundancy in the neural network model and imbalance datasets of Cleveland. Experiments were conducted with various customized model, where results showed that the proposed model using RNN and multiple GRU with synthetic minority oversampling technique (SMOTe) has reached the best performance level. This is the highest accuracy result for RNN using Cleveland datasets and much promising for making an early heart disease prediction for the patients.</span>


2021 ◽  
Vol 11 (12) ◽  
pp. 3199-3208
Author(s):  
K. Ganapriya ◽  
N. Uma Maheswari ◽  
R. Venkatesh

Prediction of occurrence of a seizure would be of greater help to make necessary precaution for taking care of the patient. A Deep learning model, recurrent neural network (RNN), is designed for predicting the upcoming values in the EEG values. A deep data analysis is made to find the parameter that could best differentiate the normal values and seizure values. Next a recurrent neural network model is built for predicting the values earlier. Four different variants of recurrent neural networks are designed in terms of number of time stamps and the number of LSTM layers and the best model is identified. The best identified RNN model is used for predicting the values. The performance of the model is evaluated in terms of explained variance score and R2 score. The model founds to perform well number of elements in the test dataset is minimal and so this model can predict the seizure values only a few seconds earlier.


2021 ◽  
Vol 11 (10) ◽  
pp. 4684
Author(s):  
Xiaoxu Niu ◽  
Junwei Ma ◽  
Yankun Wang ◽  
Junrong Zhang ◽  
Hongjie Chen ◽  
...  

As vital comments on landslide early warning systems, accurate and reliable displacement prediction is essential and of significant importance for landslide mitigation. However, obtaining the desired prediction accuracy remains highly difficult and challenging due to the complex nonlinear characteristics of landslide monitoring data. Based on the principle of “decomposition and ensemble”, a three-step decomposition-ensemble learning model integrating ensemble empirical mode decomposition (EEMD) and a recurrent neural network (RNN) was proposed for landslide displacement prediction. EEMD and kurtosis criteria were first applied for data decomposition and construction of trend and periodic components. Second, a polynomial regression model and RNN with maximal information coefficient (MIC)-based input variable selection were implemented for individual prediction of trend and periodic components independently. Finally, the predictions of trend and periodic components were aggregated into a final ensemble prediction. The experimental results from the Muyubao landslide demonstrate that the proposed EEMD-RNN decomposition-ensemble learning model is capable of increasing prediction accuracy and outperforms the traditional decomposition-ensemble learning models (including EEMD-support vector machine, and EEMD-extreme learning machine). Moreover, compared with standard RNN, the gated recurrent unit (GRU)-and long short-term memory (LSTM)-based models perform better in predicting accuracy. The EEMD-RNN decomposition-ensemble learning model is promising for landslide displacement prediction.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2008
Author(s):  
Mustufa Haider Abidi ◽  
Usama Umer ◽  
Muneer Khan Mohammed ◽  
Mohamed K. Aboudaif ◽  
Hisham Alkhalefah

Data classification has been considered extensively in different fields, such as machine learning, artificial intelligence, pattern recognition, and data mining, and the expansion of classification has yielded immense achievements. The automatic classification of maintenance data has been investigated over the past few decades owing to its usefulness in construction and facility management. To utilize automated data classification in the maintenance field, a data classification model is implemented in this study based on the analysis of different mechanical maintenance data. The developed model involves four main steps: (a) data acquisition, (b) feature extraction, (c) feature selection, and (d) classification. During data acquisition, four types of dataset are collected from the benchmark Google datasets. The attributes of each dataset are further processed for classification. Principal component analysis and first-order and second-order statistical features are computed during the feature extraction process. To reduce the dimensions of the features for error-free classification, feature selection was performed. The hybridization of two algorithms, the Whale Optimization Algorithm (WOA) and Spotted Hyena Optimization (SHO), tends to produce a new algorithm—i.e., a Spotted Hyena-based Whale Optimization Algorithm (SH-WOA), which is adopted for performing feature selection. The selected features are subjected to a deep learning algorithm called Recurrent Neural Network (RNN). To enhance the efficiency of conventional RNNs, the number of hidden neurons in an RNN is optimized using the developed SH-WOA. Finally, the efficacy of the proposed model is verified utilizing the entire dataset. Experimental results show that the developed model can effectively solve uncertain data classification, which minimizes the execution time and enhances efficiency.


Kybernetes ◽  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chandra Sekhar Kolli ◽  
Uma Devi Tatavarthi

Purpose Fraud transaction detection has become a significant factor in the communication technologies and electronic commerce systems, as it affects the usage of electronic payment. Even though, various fraud detection methods are developed, enhancing the performance of electronic payment by detecting the fraudsters results in a great challenge in the bank transaction. Design/methodology/approach This paper aims to design the fraud detection mechanism using the proposed Harris water optimization-based deep recurrent neural network (HWO-based deep RNN). The proposed fraud detection strategy includes three different phases, namely, pre-processing, feature selection and fraud detection. Initially, the input transactional data is subjected to the pre-processing phase, where the data is pre-processed using the Box-Cox transformation to remove the redundant and noise values from data. The pre-processed data is passed to the feature selection phase, where the essential and the suitable features are selected using the wrapper model. The selected feature makes the classifier to perform better detection performance. Finally, the selected features are fed to the detection phase, where the deep recurrent neural network classifier is used to achieve the fraud detection process such that the training process of the classifier is done by the proposed Harris water optimization algorithm, which is the integration of water wave optimization and Harris hawks optimization. Findings Moreover, the proposed HWO-based deep RNN obtained better performance in terms of the metrics, such as accuracy, sensitivity and specificity with the values of 0.9192, 0.7642 and 0.9943. Originality/value An effective fraud detection method named HWO-based deep RNN is designed to detect the frauds in the bank transaction. The optimal features selected using the wrapper model enable the classifier to find fraudulent activities more efficiently. However, the accurate detection result is evaluated through the optimization model based on the fitness measure such that the function with the minimal error value is declared as the best solution, as it yields better detection results.


2020 ◽  
Vol 12 (7) ◽  
pp. 1095 ◽  
Author(s):  
Ruhollah Taghizadeh-Mehrjardi ◽  
Karsten Schmidt ◽  
Alireza Amirian-Chakan ◽  
Tobias Rentschler ◽  
Mojtaba Zeraatpisheh ◽  
...  

Understanding the spatial distribution of soil organic carbon (SOC) content over different climatic regions will enhance our knowledge of carbon gains and losses due to climatic change. However, little is known about the SOC content in the contrasting arid and sub-humid regions of Iran, whose complex SOC–landscape relationships pose a challenge to spatial analysis. Machine learning (ML) models with a digital soil mapping framework can solve such complex relationships. Current research focusses on ensemble ML models to increase the accuracy of prediction. The usual ensemble method is boosting or weighted averaging. This study proposes a novel ensemble technique: the stacking of multiple ML models through a meta-learning model. In addition, we tested the ensemble through rescanning the covariate space to maximize the prediction accuracy. We first applied six state-of-the-art ML models (i.e., Cubist, random forests (RF), extreme gradient boosting (XGBoost), classical artificial neural network models (ANN), neural network ensemble based on model averaging (AvNNet), and deep learning neural networks (DNN)) to predict and map the spatial distribution of SOC content at six soil depth intervals for both regions. In addition, the stacking of multiple ML models through a meta-learning model with/without rescanning the covariate space were tested and applied to maximize the prediction accuracy. Out of six ML models, the DNN resulted in the best modeling accuracies, followed by RF, XGBoost, AvNNet, ANN, and Cubist. Importantly, the stacking of models indicated a significant improvement in the prediction of SOC content, especially when combined with rescanning the covariate space. For instance, the RMSE values for SOC content prediction of the upper 0–5 cm of the soil profiles of the arid site and the sub-humid site by the proposed stacking approaches were 17% and 9% respectively, less than that obtained by the DNN models—the best individual model. This indicates that rescanning the original covariate space by a meta-learning model can extract more information and improve the SOC content prediction accuracy. Overall, our results suggest that the stacking of diverse sets of models could be used to more accurately estimate the spatial distribution of SOC content in different climatic regions.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Rashpinder Kaur Jagait ◽  
Mohammad Navid Fekri ◽  
Katarina Grolinger ◽  
Syed Mir

Author(s):  
Wei Feng ◽  
Yuqin Wu ◽  
Yexian Fan

Purpose The purpose of this paper is to solve the shortage of the existing methods for the prediction of network security situations (NSS). Because the conventional methods for the prediction of NSS, such as support vector machine, particle swarm optimization, etc., lack accuracy, robustness and efficiency, in this study, the authors propose a new method for the prediction of NSS based on recurrent neural network (RNN) with gated recurrent unit. Design/methodology/approach This method extracts internal and external information features from the original time-series network data for the first time. Then, the extracted features are applied to the deep RNN model for training and validation. After iteration and optimization, the accuracy of predictions of NSS will be obtained by the well-trained model, and the model is robust for the unstable network data. Findings Experiments on bench marked data set show that the proposed method obtains more accurate and robust prediction results than conventional models. Although the deep RNN models need more time consumption for training, they guarantee the accuracy and robustness of prediction in return for validation. Originality/value In the prediction of NSS time-series data, the proposed internal and external information features are well described the original data, and the employment of deep RNN model will outperform the state-of-the-arts models.


Sign in / Sign up

Export Citation Format

Share Document