Research on the wheel wear of metro vehicles based on the time-varying passenger flow

2019 ◽  
Vol 71 (9) ◽  
pp. 1038-1046
Author(s):  
AiHua Zhu ◽  
Caozheng Fu ◽  
JianWei Yang ◽  
Qiang Li ◽  
Jiao Zhang ◽  
...  

Purpose This study aims to investigate the effect of time-varying passenger flow on the wheel wear of metro vehicles to provide a more accurate model for predicting wheel wear and a new idea for reducing wheel wear. Design/methodology/approach Sectional passage flow data were collected from an operational metro line. A wheel wear simulation based on time-varying passenger flow was performed via the SIMPACK software to obtain the worn wheel profile and wear distribution. The simulation involves the following models: vehicle system dynamics model, wheel-track rolling contact model, wheel wear model and variable load application model. Later, the simulation results were compared with those obtained under the traditional constant load condition and the measured wear data. Findings For different distances traveled by the metro vehicle, the simulated wheel profile and wear distribution under the variable load remained closer to the measurements than those obtained under the constant load. As the distance traveled increased, the depth and position of maximum wear and wear growth rate under the variable load tended to approach the corresponding measured values. In contrast, the simulation results under the constant load differed greatly from the measured values. This suggests that the model accuracy under the variable load was significantly improved and the simulation results can offer a more accurate basis for wear prediction. Practical implications These results will help to predict wheel wear more accurately and provide a new idea for simulating wheel wear of metro vehicles. At the same time, measures for reducing wheel wear were discussed from the perspective of passenger flow changes. Originality/value Existing research on the wheel wear of metro vehicles is mainly based on the constant load condition, which is quite different from the variable load condition where the passenger flow in real vehicles varies over time. A method of simulating wheel wear based on time-varying load is proposed in this paper. The proposed method shows a great improvement in simulation accuracy compared to traditional methods and can provide a more accurate basis for wear prediction and wheel repair.

2019 ◽  
Vol 71 (2) ◽  
pp. 284-294 ◽  
Author(s):  
AiHua Zhu ◽  
Si Yang ◽  
Qiang Li ◽  
JianWei Yang ◽  
Xi Li ◽  
...  

PurposeThe purpose of this paper is to study the wear evolution of metro wheels under the conditions of different track sequences, track composition and vehicle load and then to predict wheel wear and to guide its maintenance.MethodologyBy using the SIMPACK and MATLAB software, numerical simulation analysis of metro wheel wear is carried out based on Hertz theory, the FASTSIM algorithm and the Archard model. First of all, the vehicle dynamics model is established to calculate the motion relationship and external forces of wheel-rail in the SIMPACK software. Then, the normal force of wheel-rail is solved based on Hertz theory, and the tangential force of wheel-rail is calculated based on the FASTSIM algorithm through the MATLAB software. Next, in the MATLAB software, the wheel wear is calculated based on the Archard model, and a new wheel profile is obtained. Finally, the new wheel profile is re-input into the vehicle system dynamics model in the SIMPACK software to carry out cyclic calculation of wear.FindingsThe results show that the setting order of different curves has an obvious influence on wear when the proportion of the straight track and the curve is fixed. With the increase in running mileage, the severe wear zone is shifted from tread to flange root under the condition of the sequence-type track, but the wheel wear distribution is basically stable for the unit-type track, and their wear growth rates become closer. In the tracks with different straight-curved ratio, the more proportion the curved tracks occupy, the closer the severe wear zone is shifted to flange root. At the same time, an increase in weight of the vehicle load will aggravate the wheel wear, but it will not change the distribution of wheel wear. Compared with the measured data of one city B type metro in China, the numerical simulation results of wheel wear are nearly the same with the measured data.Practical implicationsThese results will be helpful for metro tracks planning and can predict the trend of wheel wear, which has significant importance for the vehicle to do the repair operation. At the same time, the security risks of the vehicle are decreased economically and effectively.Originality/valueAt present, many scholars have studied the influence of metro tracks on wheel wear, but mainly focused on a straight line or a certain radius curve and neglected the influence of track sequence and track composition. This study is the first to examine the influence of track sequence on metro wheel wear by comparing the sequence-type track and unit-type track. The results show that the track sequence has a great influence on the wear distribution. At the same time, the influence of track composition on wheel wear is studied by comparing different straight-curve ratio tracks; therefore, wheel wear can be predicted integrally under different track conditions.


2019 ◽  
Vol 8 (3) ◽  
pp. 1413-1418

This article proposed a method to detect the faults in multi-winding induction motor using Discrete Wavelet transform combined with Deep Belief Neural Network (DBNN). This technique relies on the instantaneous reactive power signal decomposition, from which detail coefficients and wavelet approximations are extracted which are termed as features. In order to obtain a robust diagnosis, this article proposed to classify the feature vectors extracted from DWT analysis of power signals using DBNN (Deep Belief Neural Network) to distinguish the motors state. Subsequently, in order to validate the proposed approach, a three phase squirrel cage induction machine is simulated under MATLAB software. To check the effectiveness of the proposed method of fault diagnosis the motor is simulated in different simulation environments like time varying load and constant load condition. Promising results were obtained and the performance of DBNN i.e. 99.75% accuracy. The proposed algorithm is compared with various other state-of-art methods and the comparison proves its robustness in diagnosing the fault in motors.


2012 ◽  
Vol 486 ◽  
pp. 497-502 ◽  
Author(s):  
Li Ming Chu ◽  
Wang Long Li ◽  
Hsiang Chen Hsu ◽  
Jung Shun Tsai

In this paper, the pure squeeze thin film elastohydrodynamic lubrication (TFEHL) motion of circular contacts with electric double layer (EDL) is explored under constant load condition. The coupled transient modified Reynolds, elasticity deformation, the load balance, and lubricant rheology equations were solved simultaneously by using the finite difference method and the Gauss-Seidel iteration method. The simulation results reveal that the effect of electric double layer produces an obvious increase in the film thickness and apparent viscosity. The greater the Zeta-potential, the greater the apparent viscosity, and the greater the film thickness.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Ujjwal ◽  
Jaisingh Thangaraj

Abstract In this paper, an algorithm for multipath connection provisioning in elastic optical network (EON) has been proposed. Initially, the algorithm prefers the single-path routing for service provisioning. But when single-path routing is not adequate to serve a dynamic connection, the algorithm switches to the connection request fragmentation. Its computation is based on the parameters such as capacity_constant and capacity_allowed to fragment the connection request on disjoint paths. Simulation results clearly state that the proposed algorithm performs well in service provisioning as compared to the traditional single-path routing algorithms and improves the average network throughput. Thereafter, we have investigated the limitation of Erlang B traffic model in EON for calculation of link blocking probability using routing and spectrum assignment (RSA) algorithm. It is verified by the following two ways: (i) effect on the blocking probability in case of constant load and (ii) effect of slot width on the blocking probability. Our simulation results indicate that in EON due to dynamic RSA, blocking probability is not constant in case of proportionate varying of call arrival and service rate giving constant load and blocking probability depends on the number of slots per link, but in Erlang B traffic model blocking probability is always constant in case of constant load and it considers wavelength per link instead of slots per link. This is attributed to the fact that Erlang B traffic model fails to calculate blocking probability accurately in EON. We have computed the carried traffic on 14 nodes, 21-link National Science Foundation Network (NSFNET) topology.


2018 ◽  
Vol 70 (1) ◽  
pp. 15-22 ◽  
Author(s):  
De-xing Zheng ◽  
Weifang Chen ◽  
Miaomiao Li

Purpose Thermal performances are key factors impacting the operation of angular contact ball bearings. Heat generation and transfer about angular contact ball bearings, however, have not been addressed thoroughly. So far, most researchers only considered the convection effect between bearing housings and air, whereas the cooling/lubrication operation parameters and configuration effect were not taken into account when analyzing the thermal behaviors of bearings. This paper aims to analyze the structural constraints of high-speed spindle, structural features of bearing, heat conduction and convection to study the heat generation and transfer of high-speed angular contact ball bearings. Design/methodology/approach Based on the generalized Ohm’s law, the thermal grid model of angular contact ball bearing of high-speed spindle was first established. Next Gauss–Seidel method was used to solve the equations group by Matlab, and the nodes temperature was calculated. Finally, the bearing temperature rise was tested, and the comparative analysis was made with the simulation results. Findings The results indicate that the simulation results of bearing temperature rise for the proposed model are in better agreement with the test values. So, the thermal grid model established is verified. Originality/value This paper shows an improved model on forecasting temperature rise of high-speed angular contact ball bearings. In modeling, the cooling/lubrication operation parameters and structural constraints are integrated. As a result, the bearing temperature variation can be forecasted more accurately, which may be beneficial to improve bearing operating accuracy and bearing service life.


2021 ◽  
Vol 37 (4) ◽  
pp. 631-643
Author(s):  
Tayyaba Yousaf ◽  
Sadia Farooq ◽  
Ahmed Muneeb Mehta

Purpose The purpose of this study is to investigate whether the STOXX Europe Christian price index (SECI) follows the premise of efficient market hypothesis (EMH). Design/methodology/approach The study used daily data of SECI for the period of 15 years as its launch date i.e. 31 December 2004 to 31 December 2019. Data are analyzed by taking a full-length sample and fixed-length subsample. For subsample, the data are divided into five subsamples of three years each. Subsample analysis is important for analyzing time varying efficiency of the series, as the market is said to follow EMH if it is being efficient throughout the sample. Both type of samples is examined through linear tests including autocorrelations test and variance ratio (VR) test. Findings Tests applied conclude that SECI is weak-form efficient, which means that the prices of the index include all the relevant past information and immediately react to new information. Hence, the investors cannot earn abnormal returns. Originality/value Religion-based indices grasped the attention of investors, policymakers and academic researchers because of increased concern over ethics in business. Though the impact of religion on the economy have been studied in many ways but the efficiency of religion-based indices have been less explored. The current study is primary in its nature as it analysis the efficiency of SECI. This index is important to explore because Christianity is the world’s top religion with 2.3 billion followers around the globe.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
You-Cheng Chang ◽  
Hong-Chuong Tran ◽  
Yu-Lung Lo

Purpose Laser powder bed fusion (LPBF) provides the means to produce unique components with almost no restriction on geometry in an extremely short time. However, the high-temperature gradient and high cooling rate produced during the fabrication process result in residual stress, which may prompt part warpage, cracks or even baseplate separation. Accordingly, an appropriate selection of the LPBF processing parameters is essential to ensure the quality of the built part. This study, thus, aims to develop an integrated simulation framework consisting of a single-track heat transfer model and a modified inherent shrinkage method model for predicting the curvature of an Inconel 718 cantilever beam produced using the LPBF process. Design/methodology/approach The simulation results for the curvature of the cantilever beam are calibrated via a comparison with the experimental observations. It is shown that the calibration factor required to drive the simulation results toward the experimental measurements has the same value for all settings of the laser power and scanning speed. Representative combinations of the laser power and scanning speed are, thus, chosen using the circle packing design method and supplied as inputs to the validated simulation framework to predict the corresponding cantilever beam curvature and density. The simulation results are then used to train artificial neural network models to predict the curvature and solid cooling rate of the cantilever beam for any combination of the laser power and scanning speed within the input design space. The resulting processing maps are screened in accordance with three quality criteria, namely, the part density, the radius of curvature and the solid cooling rate, to determine the optimal processing parameters for the LPBF process. Findings It is shown that the parameters lying within the optimal region of the processing map reduce the curvature of the cantilever beam by 17.9% and improve the density by as much as 99.97%. Originality/value The present study proposes a computational framework, which could find the parameters that not only yield the lowest distortion but also produce fully dense components in the LPBF process.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vikash Gurugubelli ◽  
Arnab Ghosh

Purpose The share of renewable energy sources (RESs) in the power system is increasing day by day. The RESs are intermittent, therefore maintaining the grid stability and power balance is very difficult. The purpose of this paper is to control the inverters in microgrid using different control strategies to maintain the system stability and power balance. Design/methodology/approach In this paper, different control strategies are implemented to the voltage source converter (VSC) to get the desired performance. The DQ control is a basic control strategy that is inherently present in the droop and virtual synchronous machine (VSM) control strategies. The droop and VSM control strategies are inspired by the conventional synchronous machine (SM). The main objective of this work is to design and implement the three aforementioned control strategies in microgrid. Findings The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy. Research limitations/implications In the power system, the power electronic-based power allowed by VSM is dominated by the conventional power which is generated from the traditional SM, and then the issues related to stability still need advance study. There are some differences between the SM and VSM characteristics, so the integration of VSM with the existing system still needs further study. Economical operation of VSM with hybrid storage is also one of the future scopes of this work. Originality/value The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy.


2021 ◽  
Vol 29 (2) ◽  
pp. 102-115
Author(s):  
Hyo-Chan Lee ◽  
Seyoung Park ◽  
Jong Mun Yoon

Abstract This study aims to generalize the following result of McDonald and Siegel (1986) on optimal investment: it is optimal for an investor to invest when project cash flows exceed a certain threshold. This study presents other results that refine or extend this one by integrating timing flexibility and changes in cash flows with time-varying transition probabilities for regime switching. This study emphasizes that optimal thresholds are either overvalued or undervalued in the absence of time-varying transition probabilities. Accordingly, the stochastic nature of transition probabilities has important implications to the search for optimal timing of investment.


Sign in / Sign up

Export Citation Format

Share Document