scholarly journals Analysis on micro-motion of cylinder block based on elasto-hydrodynamic lubrication

2019 ◽  
Vol 72 (5) ◽  
pp. 645-650 ◽  
Author(s):  
Jihai Jiang ◽  
Wei-Peng Yan ◽  
Ge-Qiang Li

Purpose The purpose of this paper is to analyze the micro-motion of the cylinder block. Design/methodology/approach Based on the elasto-hydrodynamic lubrication, a numerical model for the cylinder block/valve plate interface is proposed, with consideration of the elastic deformations, the pressure-viscosity effect and asperity contacts. The influence-function method is applied to calculating the actual deformations of the cylinder block and the valve plate. The asperity contact model simplified from Greenwood assumption is introduced into the numerical model. Furthermore, the relationship between the micro-motion and the operating condition, the sealing belt width is discussed, respectively. Findings The results show an increase in the discharge pressure causes the tilt state and the vibrating motion getting worse, which can be eased by improving the rotational speed, the sealing belt width and the ratio of external and internal sealing belt width. Originality/value The proposed research can provide a theoretical reference for the optimizing design of cylinder block/valve plate pair.

Author(s):  
Rene Chacon ◽  
Monika Ivantysynova

This paper explains how a combination of advanced multidomain numerical models can be employed to design an axial piston machine of swash plate type within a virtual prototyping environment. Examples for the design and optimization of the cylinder block/valve plate interface are presented.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jiahai Huang ◽  
Zhenhua Dou ◽  
Zhenglei Wang ◽  
Long Quan ◽  
Linkai Niu

AbstractThe tribological properties of cylinder block/valve plate is an important consideration in the design of axial piston pump. The effect of materials and heat treatment on friction and wear properties has been studied in depth. Engineering experiences show that the speed and load also affect the tribological properties, but these have not been systematically analyzed. The purpose of this paper is to evaluate the tribological properties of the commonly used materials (CuPb15Sn5 and 38CrMoAl/42CrMo) for cylinder block/valve plate with different heat treatment and contact pressure at different speed. During the test, tribometer is used to simulate the contact pattern between the valve plate/cylinder block in axial piston pump, the friction coefficient, wear rate and surface topography are analyzed to evaluate the tribological properties of different types of friction samples at different speed. Results indicate that: (1) contact surface of the samples at 1800 r/min is more prone to adhesive wear than those at 500 r/min; (2) in the terms of wear resistance, quench-tempered and nitrided 38CrMoAl (38CrMoAl QTN for short) is better than quench-tempered and nitrided 42CrMo, although they are all commonly used materials in the axial piston pump; (3) 2.5 MPa is the critical contact pressure of the interface between valve plate made of 38CrMoAl QTN and cylinder block made of CuPb15Sn5 on the tribometer, which implies the pressure bearing area at the bottom of the cylinder block should be carefully designed; (4) the valve plate/cylinder block made of 38CrMoAl QTN/CuPb15Sn5 exhibits good tribological properties in a real axial piston pump. This research is useful for the failure analysis and structural optimization design of the valve plates/cylinder block.


Author(s):  
L. Shang ◽  
M. Ivantysynova

The efficiency of an axial piston pump or motor is dominated by the volumetric and torque losses of the three main lubricating interfaces (piston/cylinder, cylinder block/valve plate, and slipper/swash plate). The research study in this paper only focuses on the cylinder block/valve plate interface. The goal of this research is to investigate a novel approach for scaling the cylinder block/valve plate interface to have the same percentage of volumetric and torque losses of the baseline interface. To achieve this research goal, many design parameters influencing the performance of the interface are investigated. An in-house developed fluid structure and thermal interaction model was used to analyze the cylinder block/valve plate interface including the resulting parts temperature, the parts elastic deformation due to pressure and thermal load, the fluid film properties and resulting energy dissipation, friction torque, and leakage of cylinder block/valve plate interfaces. This model is utilized to simulate the cylinder block/valve plate interface performance of different sizes of the displacement units. In this paper, the displacement volume of the biggest unit is sixty-four times larger than the smallest unit. The computational study reveals the design parameters influencing the elastic deformations of the solid parts and the energy dissipation and stability of the fluid film in cylinder block/valve plate interface of different sizes. Based on these investigations, a novel scaling approach to scale the cylinder block/valve plate interface is discussed.


Author(s):  
Rene Chacon ◽  
Monika Ivantysynova

Lubricating gaps are the primary source of energy dissipation in axial piston machines of swash plate-type. One of these lubricating gaps is designated as the cylinder block/valve plate interface, and is one of the most critical design elements for this type of positive displacement machine. In the past, extensive work has been done at Maha Fluid Power Research Center both to model this interface and to study the effects of micro-surface shaping on the valve plate. This paper presents a more in-depth investigation into optimizing valve plate micro-surface shaping (both by altering the number and amplitude of waves) in order to achieve a fluid film thickness that compromises between leakage and torque loss, minimizes power loss in the cylinder block/valve plate interface, and maximizes machine efficiency.


AIP Advances ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 115221
Author(s):  
Jihai Jiang ◽  
Boran Du ◽  
Jian Zhang ◽  
Geqiang Li

Author(s):  
Nguyen Van Liem ◽  
Wu Zhenpeng ◽  
Jiao Renqiang

The effect of the shape/size and distribution of microgeometries of textures on improving the tribo-performance of crankpin bearing is proposed. Based on a combined model of the slider-crank mechanism dynamic and hydrodynamic lubrication, the distribution density, area density, and shape of spherical textures, square-cylindrical textures, wedge-shaped textures, and a hybrid between spherical texture and square-cylindrical texture on the crankpin bearing's tribo-performance are investigated under different operating conditions of the engine. The tribological characteristic of the crankpin bearing is then evaluated via the indexes of the oil film pressure p, asperity contact force, friction force, and friction coefficient of the crankpin bearing. The research results show that the distribution density with n = 12 and m = 6, and area density with α = 30% of various microtextures have an obvious effect on ameliorating the crankpin bearings tribo-performance. Concurrently, at the mixed lubrication region, the shape of the square-cylindrical texture on improving the tribo-performance is better than the other shapes of the spherical texture, wedge-shaped texture, and spherical and square-cylindrical texture. Particularly, all the average values of the asperity contact force, friction force, and friction coefficient with a square-cylindrical texture are significantly reduced by 14.6%, 19.5%, and 34.5%, respectively, in comparison without microtextures. Therefore, the microtextures of the spherical texture applied on the bearing surface can contribute to enhance the durability and decrease the friction power loss of the engine.


Sign in / Sign up

Export Citation Format

Share Document