Tribocorrosion behaviors of thermal spraying WC/Ni60 coated 316L stainless steel in artificial seawater

2019 ◽  
Vol 71 (6) ◽  
pp. 741-748 ◽  
Author(s):  
Eryong Liu ◽  
Yingxin Zhang ◽  
Xiang Wang ◽  
Zhixiang Zeng ◽  
Huiling Du ◽  
...  

Purpose This paper aims to improve the tribocorrosion properties of 316L, thus WC/Ni60 coated 316L was prepared by thermal spraying technique. Design/methodology/approach Composition and microstructure of WC/Ni60 coating was investigated, and tribological properties of 316 L and WC/Ni60 coating were studied under dry sliding, deionized water and artificial seawater. Findings The results showed that WC/Ni60 coating was lamellar structure, and the phase composition consisted of γ-Ni solid solution, carbides and borides. Furthermore, the hardness and corrosion resistance of 316 L in static seawater and wear resistance in dry sliding were improved by WC reinforced nickel-based coating. Furthermore, tribocorrosion results demonstrated that wear resistance of WC/Ni60 coating was also significantly better than 316 L, especially for higher load at artificial seawater. The reason can be attributed to the fact that the passive film of WC/Ni60 coating consisted of tungsten carbide, Ni(OH)2 and FeOOH for WC/Ni60 coating and only FeOOH for 316 L. Originality/value According to this study, it can be concluded that WC phases acted as a role in resisting the wear damages. Meanwhile, Ni-based materials performed well in corrosion resistance. Thus, the combined-effect Ni-based alloys and WC phases in WC/Ni60 coating showed better tribocorrosion performance than 316 L.

2019 ◽  
Vol 66 (4) ◽  
pp. 471-478 ◽  
Author(s):  
Majid Hosseinzadeh ◽  
Abdol Hamid Jafari ◽  
Rouhollah Mousavi ◽  
Mojtaba Esmailzadeh

Purpose In this study, electrochemical deposition method which have cheaper equipment than thermal spraying methods and is available for the production of composite coatings were used. Design/methodology/approach Composite coatings were electrodeposited from a Watts's bath solution in which the suspended Cr3C2-NiCr particles were dispersed in the bath solution during deposition. Potentiodynamic polarization and electrochemical impedance spectroscopy techniques have been used to evaluate the corrosion resistance of the composite coating in the 3.5 Wt.% NaCl solution. Findings It was found that the submicron Cr3C2-NiCr particles distributed uniformly in the coating and depend on the current density of deposition, different amount of particles can be incorporated in the coating. The results showed that the corrosion resistance of the Ni/ Cr3C2-NiCr composite coatings is more comparable to the pure nickel coating. Originality/value Production of Ni-base composite coating from an electrolytic bath containing Cr3C2-NiCr particles is possible via electrodeposition.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 622
Author(s):  
Xiaolong Xie ◽  
Bingbing Yin ◽  
Fucheng Yin ◽  
Xuemei Ouyang

The corrosion of galvanizing equipment parts by liquid zinc is an urgent problem that needs solving. In this work, FeB-30 wt.% Al0.25FeNiCoCr cermet coating was deposited on the surface of 316L stainless steel by AC-HVAF to protect galvanizing equipment parts from corrosion by liquid zinc. The microstructures and phase compositions of powders and the coating were determined by SEM, EDS, and XRD in detail. Additionally, the microhardness, fracture toughness, abrasion wear resistance, and corrosion resistance of the coating to liquid zinc were also studied. The results indicate that the abrasion wear resistance and corrosion resistance of the coating are much better than that of the 316L stainless steel substrate. The failure of the coating in liquid zinc is mainly due to the penetration of liquid zinc into macro-cracks, which causes the coating to peel off.


2018 ◽  
Vol 65 (4) ◽  
pp. 417-429
Author(s):  
Yan Baoxu ◽  
Kong Dejun

PurposeThe amorphous Al-Ni-Fe-Gd coatings were fabricated to improve anti-corrosion performance of offshore platforms.Design/methodology/approachThe amorphous Al-Ni-Fe-Gd coatings were first fabricated on S355 steel using the laser thermal spraying.FindingsThe amorphous forming capability and corrosion resistance increases with the laser powers increasing.Research Limitations/implicationsThe amorphous Al-Ni-Fe-Gd coatings were applied on S355 steel of offshore platforms to increase its long-term heavy and anti-corrosion protection.Originality/valueThe amorphous Al-Ni-Fe-Gd coatings were first fabricated using a laser thermal spraying, improving its anti-corrosion.


Alloy Digest ◽  
2003 ◽  
Vol 52 (9) ◽  

Abstract Crucible CPM S30V is a martensitic stainless steel designed with a combination of toughness, wear resistance, and corrosion resistance equal to or better than 440C. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity as well as fracture toughness. It also includes information on corrosion and wear resistance as well as heat treating and machining. Filing Code: SS-891. Producer or source: Crucible Service Centers.


2017 ◽  
Vol 69 (6) ◽  
pp. 919-924
Author(s):  
Dawit Zenebe Segu ◽  
Pyung Hwang

Purpose This study aims to compare the friction and wear behaviors of Fe68.3C6.9Si2.5 B6.7P8.8Cr2.2Al2.1Mo2.5 bulk metallic glass (BMG) under sliding using dry, deionized water-lubricated and oil-lubricated conditions. The comparison was performed using a unidirectional ball-on-flat tribometer under different applied loads, and the results were compared to the properties of a conventional material, SUJ2. Fe-based BMG materials have recently been attracting a great deal of attention for prospective engineering applications. Design/methodology/approach As a part of the development of Fe-based BMGs that can be cost-effectively produced in large quantities, an Fe-based BMG Fe68.8C7.0Si3.5B5.0P9.6 Cr2.1Mo2.0Al2.0 with high glass forming ability was fabricated. In the present study, the friction and wear properties of Fe-based BMG has been comparatively evaluated under dry sliding, deionized water- and oil-lubricated conditions using a unidirectional ball-on-flat tribometer under different applied loads, and the results were compared to the properties of conventional material SUJ2. Findings The results show that the Fe-based BMG had better friction performance than the conventional material. Both the friction coefficient and wear mass loss increased with increasing load. The sliding wear mechanism of the BMG changed with the sliding conditions. Under dry sliding conditions, the wear scar of the Fe-based BMG was characterized by abrasive wear, plastic deformation, micro-cracks and peeling-off wear. Under water- and oil-lubricated conditions, the wear scar was mainly characterized by abrasive wear and micro-cutting. Originality/value In this investigation, the authors developed a new BMG alloy Fe68.8C7.0Si3.5B5.0P9.6Cr2.1Mo2.0Al2.0 to improve the friction and wear performance under dry sliding, deionized water- and oil- lubricated conditions.


2016 ◽  
Vol 33 (1) ◽  
pp. 21-22 ◽  
Author(s):  
Martin Kesselman

Purpose – This article examines Current CITE-ings from the Popular and Trade Computing Press, Telework and Telecommuting Design/methodology/approach – The methodology adopted is a literature review. Findings – Readily available technologies now allow librarians to perform most of their work-offsite. Some traditional building-based services such as reference, have been taken over by virtual reference and now even instruction offers options on par with or even better than classroombased questions such as a webinar that can be viewed and reviewed at any time or by having librarians embedded into various courseware packages. Researchlimitations/implications – Librarians no longer need be limited to a single library; groups of subject librarians can work together in the cloud to provide services to multiple universities. Originality/value – This article collates some articles from the non-library literature that mayprovide some ideas and review advantages and disadvantages for both the library and employee


2018 ◽  
Vol 30 (6) ◽  
pp. 747-756 ◽  
Author(s):  
Xiaofang Guo ◽  
Hui Shi ◽  
Chenglong Wei ◽  
Xiao Dong Chen

Purpose The purpose of this paper is to reveal the unique thermal property of Mongolian clothing from the current western clothing and explain their environmental adaptation to the climate of Mongolian plateau in China. Design/methodology/approach Thermal insulation and the temperature rating (TR) of eight Mongolian robe ensembles and two western clothing ensembles were investigated by manikin testing and wearing trials, respectively. The clothing area factor (fcl) of these Mongolian clothing was measured by photographic method and estimated equation from ISO 15831. Finally, the TR prediction model for Mongolian clothing was built and compared with current models for western clothing in ISO 7730 and for Tibetan clothing in previous article. Findings The results demonstrated that the total thermal insulation of Mongolian robe ensembles was much bigger than that of western clothing ensembles and ranged from 1.81clo to 3.11clo during the whole year. The fcl of the Mongolian clothing should be determined by photographic method because the differences between these two methods were much bigger from 0.6 to 13.9 percent; the TR prediction model for Mongolian robe ensembles is TR=25.57−7.13Icl, which revealed that the environmental adaptation of Mongolian clothing was much better than that of western clothing and similar to that of Tibetan clothing. Originality/value The research findings give a detailed information about the thermal property of China Mongolian clothing, and explain the environmental adaptation of Mongolian clothing to the cold and changing climate.


2017 ◽  
Vol 24 (5) ◽  
pp. 809-827 ◽  
Author(s):  
Ahmed Ebrahim Abu El-Maaty ◽  
Amr M. El-Kholy ◽  
Ahmed Yousry Akal

Purpose Modeling represents the art of translating problems from an application area into tractable mathematical formulations whose theoretical and numerical analysis provides insight, answers and guidance useful for the originating application. The purpose of this paper is to determine the causal causes of schedule overrun and cost escalation of highway projects in Egypt in order to be used as independents variables in mathematical models for predicting the percentages of schedule overrun and cost escalation of such projects in Egypt. Design/methodology/approach A survey of a randomly selected samples yielded responses from 40 owners, 15 consultants and 56 contractors. The survey includes 38 schedule overrun factors and 26 cost escalation factors. The effectiveness degree of the identified factors has been identified by the triangle fuzzy approach. Findings The results of the survey show that “contractor’s technical staff is insufficient and ineligible to accomplish the project” is the most important cause of schedule overrun, while the major cause of cost escalation is inadequate preparation of the project concerning planning and execution. Originality/value The main contribution of this study is predicting the percentages of schedule overrun and cost escalation of highway projects in Egypt. Through the application of the linear regression analysis method and statistical fuzzy theory, four predictive models have been developed and it has been noted that the linear regression-based model shows prediction accuracy better than statistical fuzzy-based model in predicting percentages of schedule overrun and cost escalation.


2018 ◽  
Vol 70 (8) ◽  
pp. 1408-1413 ◽  
Author(s):  
Hongjin Zhao ◽  
Lei Cao ◽  
Yong Wan ◽  
Shuyan Yang ◽  
Jianguo Gao ◽  
...  

Purpose The purpose of this paper is to increase wear resistance of aluminum. Design/methodology/approach The authors have studied the ways to improve the tribological performance of aluminum by assembling stearic acid on aluminum coated by sol-gel-derived TiO2 film. The samples were characterized by infrared spectroscopy, contact angle measurements and a macro friction and wear tester. Findings Enhanced wear resistance was clearly obtained after functionalization of TiO2 film on aluminum by stearic acid. Originality/value The relevant results might be helpful for guiding the surface modification of aluminum devices in industrial applications.


2018 ◽  
Vol 39 (1) ◽  
pp. 32-42 ◽  
Author(s):  
Epaminondas Koronis ◽  
Stavros Ponis

Purpose The paper aims to adopt a strategic view of organizational survival and argue that preparedness, responsiveness, adaptability and learning abilities constitute organizational drivers of resilience and provide a new direction on crisis management. Design/methodology/approach As a conceptual and literature exploration, the methodological focus is to combine various concepts within a unified model for resilience. Findings The proposed conceptual model highlights the need for strategic reconfigurations toward the construction of a resilience culture and the development of a supporting social capital in organizations. It also portrays organizational survival and sustainability as being dependent on strategic characteristics rather than on the managerial ability to handle situations and manage crisis. Research limitations/implications In this paper, implications, methodological concerns in the study of resilience and further research directions have been presented. Practical implications The paper approaches a new way of thinking about crises and provides a set of cultural and organizational characteristics that would increase resilience and crisis management abilities. Originality/value While organizations are nowadays more than ever affected by disruptions and crises, their inherent ability and strategies to protect their sustainability have been undertheorized. This paper aims at contributing to a growing and fruitful discussion.


Sign in / Sign up

Export Citation Format

Share Document