Renovation in hospitals: a case study on the use of control cubes for local repairs in health-care facilities

2020 ◽  
Vol 18 (3) ◽  
pp. 247-257
Author(s):  
Ehsan Mousavi ◽  
Vivek Sharma ◽  
Dhaval Gajjar ◽  
Shervin Shoai Naini

Purpose The purpose of this study is to evaluate the effectiveness of the control cubes for dust control in health-care facilities. Research shows that more than 80% of pathogenic agents in hospitals are spread into the air, where they either remain airborne or deposit on the surface. At the same time, renovation and repair activities, including regular maintenance, are a necessity in active health-care facilities and a multitude of studies have documented their impact on indoor air quality. The dust that is generated by construction activities may potentially carry pathogenic agents, varying from coarse particles (≤10 µm, PM10) to fine particles (≤2.5 µm, PM2.5), including airborne bacteria, and fungal spores linked to high patient mortality in immune-compromised patients. Design/methodology/approach This study measures the impact and effectiveness of one such preventative measure, namely, the control cube (CC), on air quality during renovation and repair. CC is a temporary structure, typically made from stainless steel, around the local repair zone to minimize the spread of dust and potential microorganisms. The current paper presents a comparative analysis to identify the effectiveness of a CC equipped with the high-efficiency particulate filtration (HEPA) filter in a hospital setting by simulating construction renovation and repair work. Findings A baseline was established to measure the effectiveness of CCs and the impact of negative pressure on the indoor air quality in a hospital during simulated renovation work. Results showed that CCs are very effective in minimizing the spread of dust due to construction activities in the hospital. However, it is imperative to ensure that the air inside the CC is cleaned via filtration. Originality/value CCs are very effective, and this paper investigates the best approach for facility managers to implement this strategy.

Facilities ◽  
2019 ◽  
Vol 37 (9/10) ◽  
pp. 600-623 ◽  
Author(s):  
Marco Gola ◽  
Gaetano Settimo ◽  
Stefano Capolongo

Purpose Several countries have carried out air quality monitoring in professional workplaces where chemicals are used. Health-care spaces have been less investigated. This paper aims to define a protocol, as developed by a research group, for inpatient rooms to understand the state of the art and to suggest design and management strategies for improving process quality. Design/methodology/approach Starting from the ISO-16000 standard and guidelines for monitoring activities, a protocol is defined for a one year investigation, with passive samplers. Through data analysis of the investigations and analysis of the cleaning and finishing products, heating, ventilation and air conditioning and maintenance activities, etc., it is possible to highlight the potential influences of chemical pollution. Findings A methodology is defined for understanding the chemical pollution and the possible factors related to construction materials, cleaning products and maintenance activities. Research limitations/implications The paper analyzes only a limited number of case studies because the monitoring activity is still in progress. Practical implications The investigation offers a starting point for a wide tool for the definition of design, maintenance and management strategies in health-care facilities. Social implications The research project, aimed at improving the knowledge of indoor air quality (IAQ) in inpatient rooms, is a starting point for a supporting tool for future regulations concerning health-care facilities. Originality/value IAQ is an issue on which many governments are focusing. Several health-care researchers have reported studies that aim at improving users’ health. Most investigations are about biological and physical risks, but chemical risks have been less studied. The paper suggests some design and management strategies for inpatient room.


2021 ◽  
Vol 13 (8) ◽  
pp. 4139
Author(s):  
Muriel Diaz ◽  
Mario Cools ◽  
Maureen Trebilcock ◽  
Beatriz Piderit-Moreno ◽  
Shady Attia

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO2 concentration as a proxy for IAQ. The monitoring of CO2, temperature, and humidity revealed that indoor air CO2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.


Author(s):  
Farhang Tahmasebi ◽  
Yan Wang ◽  
Elizabeth Cooper ◽  
Daniel Godoy Shimizu ◽  
Samuel Stamp ◽  
...  

The Covid-19 outbreak has resulted in new patterns of home occupancy, the implications of which for indoor air quality (IAQ) and energy use are not well-known. In this context, the present study investigates 8 flats in London to uncover if during a lockdown, (a) IAQ in the monitored flats deteriorated, (b) the patterns of window operation by occupants changed, and (c) more effective ventilation patterns could enhance IAQ without significant increases in heating energy demand. To this end, one-year’s worth of monitored data on indoor and outdoor environment along with occupant use of windows has been used to analyse the impact of lockdown on IAQ and infer probabilistic models of window operation behaviour. Moreover, using on-site CO2 data, monitored occupancy and operation of windows, the team has calibrated a thermal performance model of one of the flats to investigate the implications of alternative ventilation strategies. The results suggest that despite the extended occupancy during lockdown, occupants relied less on natural ventilation, which led to an increase of median CO2 concentration by up to 300 ppm. However, simple natural ventilation patterns or use of mechanical ventilation with heat recovery proves to be very effective to maintain acceptable IAQ. Practical application: This study provides evidence on the deterioration of indoor air quality resulting from homeworking during imposed lockdowns. It also tests and recommends specific ventilation strategies to maintain acceptable indoor air quality at home despite the extended occupancy hours.


Author(s):  
Behrad Pourmohammadi ◽  
Ahad Heydari ◽  
Farin Fatemi ◽  
Ali Modarresi

Abstract Objectives: Iran is exposed to a wide range of natural and man-made hazards. Health-care facilities can play a significant role in providing life-saving measures in the minutes and hours immediately following the impact or exposure. The aim of this study was to determine the preparedness of health-care facilities in disasters and emergencies. Methods: This cross-sectional study was conducted in Damghan, Semnan Province, in 2019. The samples consisted of all the 11 health-care facilities located in Damghan County. A developed checklist was used to collect the data, including 272 questions in 4 sections: understanding threatening hazards, functional, structural, and nonstructural vulnerability of health-care facilities. The data were analyzed using SPSS 21. Results: The results revealed that the health-care facilities were exposed to 22 different natural and man-made hazards throughout the county. The total level of preparedness of the health-care centers under assessment was 45.8%. The average functional, structural, and nonstructural vulnerability was assessed at 49.3%, 31.6%, and 56.4%, respectively. Conclusions: Conducting mitigation measures is necessary for promoting the functional and structural preparedness. Disaster educational programs and exercises are recommended among the health staff in health-care facilities.


Author(s):  
Aaron Asibi Abuosi ◽  
Mahama Braimah

Purpose The purpose of this study was to examine patient satisfaction with the quality of care in Ghana’s health-care facilities using a disaggregated approach. Design/methodology/approach The study was a cross-sectional national survey. A sample of 4,079 males and females in the age group of 15-49 years were interviewed. Descriptive statistics, principal component analysis and t-tests were used in statistical analysis. Findings About 70 per cent of patients were satisfied with the quality of care provided in health-care facilities in Ghana, whereas about 30 per cent of patients were fairly satisfied. Females and insured patients were more likely to be satisfied with the quality of care, compared with males and uninsured patients. Research limitations/implications Because data were obtained from a national survey, the questionnaire did not include the type of facility patients attended to find out whether satisfaction with the quality of care varied by the type of health facility. Future studies may, therefore, include this. Practical implications The study contributes to the literature on patient satisfaction with the quality of care. It highlights that long waiting time remains an intractable problem at various service delivery units of health facilities and constitutes a major source of patient dissatisfaction with the quality of care. Innovative measures must, therefore, be adopted to address the problem. Originality/value There is a paucity of research that uses a disaggregated approach to examine patient satisfaction with the quality of care at various service delivery units of health facilities. This study is a modest contribution to this research gap.


2020 ◽  
pp. 1420326X2096076
Author(s):  
Pedro F. Pereira ◽  
Nuno M. M. Ramos

In Portugal, residential buildings commonly have their ventilation strategy changed after commissioning. This occurs due to the building managers' willingness to reduce shared costs with the electricity needed for fan operation. However, this option is not technically supported, and the effects of such a strategy on indoor air quality-related to human pollutants are yet to be quantified. CO2 was monitored in 15 bedrooms and air exchange rates were calculated for each room. The air exchange rate values ranged from 0.18 to 0.53 h−1 when mechanical extraction ventilation was off, and from 0.45 to 0.90 h−1 when mechanical extraction ventilation was on, which represents an average increase of 119%. With the current intermittent ventilation strategy, all rooms remain above 1500 ppm for a given percentage of time, and 12 rooms presenting CO2 concentrations above 2000 ppm. Simulations of theoretical CO2 concentrations, for a non-interrupted mechanical ventilation strategy show that no rooms would accumulate CO2 concentrations above 2000 ppm, and only 25% would present CO2 concentrations above 1500 ppm. Pearson correlations between the monitored CO2 and human and spatial factors identified two relevant parameters. Those parameters correspond to ratios between CO2 generation and floor area ([Formula: see text]), and airflow with CO2 generation ([Formula: see text]). The proposed ratios could be used as ways to optimise ventilation costs and indoor air quality.


Facilities ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ulrika Uotila ◽  
Arto Saari ◽  
Juha-Matti Kalevi Junnonen ◽  
Lari Eskola

Purpose Poor indoor air quality in schools is a worldwide challenge that poses health risks to pupils and teachers. A possible response to this problem is to modify ventilation. Therefore, the purpose of this paper is to pilot a process of generating alternatives for ventilation redesign, in an early project phase, for a school to be refurbished. Here, severe problems in indoor air quality have been found in the school. Design/methodology/approach Ventilation redesign is investigated in a case study of a school, in which four alternative ventilation strategies are generated and evaluated. The analysis is mainly based on the data gathered from project meetings, site visits and the documents provided by ventilation and condition assessment consultants. Findings Four potential strategies to redesign ventilation in the case school are provided for decision-making in refurbishment in the early project phase. Moreover, the research presents several features to be considered when planning the ventilation strategy of an existing school, including the risk of alterations in air pressure through structures; the target number of pupils in classrooms; implementing and operating costs; and the size of the space that ventilation equipment requires. Research limitations/implications As this study focusses on the early project phase, it provides viewpoints to assist decision-making, but the final decision requires still more accurate calculations and simulations. Originality/value This study demonstrates the decision-making process of ventilation redesign of a school with indoor air problems and provides a set of features to be considered. Hence, it may be beneficial for building owners and municipal authorities who are engaged in planning a refurbishment of an existing building.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prince Junior Asilevi ◽  
Patrick Boakye ◽  
Sampson Oduro-Kwarteng ◽  
Bernard Fei-Baffoe ◽  
Yen Adams Sokama-Neuyam

AbstractNon-thermal plasma (NTP) is a promising technology for the improvement of indoor air quality (IAQ) by removing volatile organic compounds (VOCs) through advanced oxidation process (AOP). In this paper, authors developed a laboratory scale dielectric barrier discharge (DBD) reactor which generates atmospheric NTP to study the removal of low-concentration formaldehyde (HCHO), a typical indoor air VOC in the built environment associated with cancer and leukemia, under different processing conditions. Strong ionization NTP was generated between the DBD electrodes by a pulse power zero-voltage switching flyback transformer (ZVS-FBT), which caused ionization of air molecules leading to active species formation to convert HCHO into carbon dioxide (CO2) and water vapor (H2O). The impact of key electrical and physical processing parameters i.e. discharge power (P), initial concentration (Cin), flow rate (F), and relative humidity (RH) which affect the formaldehyde removal efficiency (ɳ) were studied to determine optimum conditions. Results show that, the correlation coefficient (R2) of removal efficiency dependence on the processing parameters follow the order R2 (F) = 0.99 > R2 (RH) = 0.96, > R2 (Cin) = 0.94 > R2 (P) = 0.93. The removal efficiency reached 99% under the optimum conditions of P = 0.6 W, Cin = 0.1 ppm, F = 0.2 m3/h, and RH = 65% with no secondary pollution. The study provided a theoretical and experimental basis for the application of DBD plasma for air purification in the built environment.


Sign in / Sign up

Export Citation Format

Share Document