Hotel profitability: a multilayer neural network approach

2019 ◽  
Vol 11 (1) ◽  
pp. 35-48
Author(s):  
Rubén Lado-Sestayo ◽  
Milagros Vivel-Búa

Purpose The purpose of this paper is to design an algorithm to predict hotel profitability by means of deep learning techniques. Design/methodology/approach The methodology consists of a multi-layered neural network that includes a lag of profitability as the input. Furthermore, other input variables are related to hotel and tourist destinations; the raw data for hotel and tourist destinations were collected from multiple public access data sources. Findings The results show that the proposed model has a high predictive capacity of hotel profitability in all the years studied (2005-2011), according to the performance metrics evaluated within the sample. Thus, the authors can conclude that deep learning algorithms can be a useful tool to evaluate hotel performance. Practical implications The algorithm designed in this research could be of interest to improve decision-making processes related to profitability, for example, in evaluating the creation of new hotels. Moreover, the model provides a quick and efficient analyses that could be of interest to investors and lenders. In particular, they could compare investment alternatives in the hotel sector. Also, according to the results, the location variables are important determinants of hotel profitability, and consequently, hotel managers should collaborate with the tourist destination managers to improve profitability. From an internal perspective, hotel managers should focus on the management of human resources. Originality/value This paper is the first empirical study that predicts hotel profitability using deep learning techniques. In addition, this methodology is applied to analyse hotel profitability, for the first time, in the Spanish market. This market is an ideal analytical framework because of its heterogeneity with respect to hotel supply in terms of seasonality and coastal characteristics, among others.

Recently, DDoS attacks is the most significant threat in network security. Both industry and academia are currently debating how to detect and protect against DDoS attacks. Many studies are provided to detect these types of attacks. Deep learning techniques are the most suitable and efficient algorithm for categorizing normal and attack data. Hence, a deep neural network approach is proposed in this study to mitigate DDoS attacks effectively. We used a deep learning neural network to identify and classify traffic as benign or one of four different DDoS attacks. We will concentrate on four different DDoS types: Slowloris, Slowhttptest, DDoS Hulk, and GoldenEye. The rest of the paper is organized as follow: Firstly, we introduce the work, Section 2 defines the related works, Section 3 presents the problem statement, Section 4 describes the proposed methodology, Section 5 illustrate the results of the proposed methodology and shows how the proposed methodology outperforms state-of-the-art work and finally Section VI concludes the paper.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2258
Author(s):  
Madhab Raj Joshi ◽  
Lewis Nkenyereye ◽  
Gyanendra Prasad Joshi ◽  
S. M. Riazul Islam ◽  
Mohammad Abdullah-Al-Wadud ◽  
...  

Enhancement of Cultural Heritage such as historical images is very crucial to safeguard the diversity of cultures. Automated colorization of black and white images has been subject to extensive research through computer vision and machine learning techniques. Our research addresses the problem of generating a plausible colored photograph of ancient, historically black, and white images of Nepal using deep learning techniques without direct human intervention. Motivated by the recent success of deep learning techniques in image processing, a feed-forward, deep Convolutional Neural Network (CNN) in combination with Inception- ResnetV2 is being trained by sets of sample images using back-propagation to recognize the pattern in RGB and grayscale values. The trained neural network is then used to predict two a* and b* chroma channels given grayscale, L channel of test images. CNN vividly colorizes images with the help of the fusion layer accounting for local features as well as global features. Two objective functions, namely, Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR), are employed for objective quality assessment between the estimated color image and its ground truth. The model is trained on the dataset created by ourselves with 1.2 K historical images comprised of old and ancient photographs of Nepal, each having 256 × 256 resolution. The loss i.e., MSE, PSNR, and accuracy of the model are found to be 6.08%, 34.65 dB, and 75.23%, respectively. Other than presenting the training results, the public acceptance or subjective validation of the generated images is assessed by means of a user study where the model shows 41.71% of naturalness while evaluating colorization results.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4953
Author(s):  
Sara Al-Emadi ◽  
Abdulla Al-Ali ◽  
Abdulaziz Al-Ali

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2021 ◽  
Author(s):  
Hepzibah Elizabeth David ◽  
K. Ramalakshmi ◽  
R. Venkatesan ◽  
G. Hemalatha

Tomato crops are infected with various diseases that impair tomato production. The recognition of the tomato leaf disease at an early stage protects the tomato crops from getting affected. In the present generation, the emerging deep learning techniques Convolutional Neural Network (CNNs), Recurrent Neural Network (RNNs), Long-Short Term Memory (LSTMs) has manifested significant progress in image classification, image identification, and Sequence Predictions. Thus by using these computer vision-based deep learning techniques, we developed a new method for automatic leaf disease detection. This proposed model is a robust technique for tomato leaf disease identification that gives accurate and better results than other traditional methods. Early tomato leaf disease detection is made possible by using the hybrid CNN-RNN architecture which utilizes less computational effort. In this paper, the required methods for implementing the disease recognition model with results are briefly explained. This paper also mentions the scope of developing more reliable and effective means of classifying and detecting all plant species.


2021 ◽  
Author(s):  
Ghazaala Yasmin ◽  
ASIT KUMAR DAS ◽  
Janmenjoy Nayak ◽  
S Vimal ◽  
Soumi Dutta

Abstract Speech is one of the most delicate medium through which gender of the speakers can easily be identified. Though the related research has shown very good progress in machine learning but recently, deep learning has imparted a very good research area to explore the deficiency of gender discrimination using traditional machine learning techniques. In deep learning techniques, the speech features are automatically generated by the reinforcement learning from the raw data which have more discriminating power than the human generated features. But in some practical situations like gender recognition, it is observed that combination of both types of features sometimes provides comparatively better performance. In the proposed work, we have initially extracted and selected some informative and precise acoustic features relevant to gender recognition using entropy based information theory and Rough Set Theory (RST). Next, the audio speech signals are directly fed into the deep neural network model consists of Convolution Neural Network (CNN) and Gated Recurrent Unit network (GRUN) for extracting features useful for gender recognition. The RST selects precise and informative features, CNN extracts the locally encoded important features, and GRUN reduces the vanishing gradient and exploding gradient problems. Finally, a hybrid gender recognition system is developed combining both generated feature vectors. The developed model has been tested with five bench mark and a simulated dataset to evaluate its performance and it is observed that combined feature vector provides more effective gender recognition system specially when transgender is considered as a gender type together with male and female.


2020 ◽  
Author(s):  
Hamid Hassanpour

This is a paper regarding application of deep neural network in prediction of Forex market. It utilized advanced deep learning techniques and software package in order ti evaluate capability of deep neural network in market behavior prediction.


Sign in / Sign up

Export Citation Format

Share Document