Classroom innovation through 3D printing

2016 ◽  
Vol 33 (3) ◽  
pp. 5-7 ◽  
Author(s):  
Rachael E. Elrod

Purpose Three-dimensional (3D) printing, also known as additive manufacturing, is a growing field for many professionals, including those in education. The purpose of this paper is to briefly review various ways in which 3D printing is being used to enhance classroom learning in the K-12 environment and to highlight how one academic library is supporting that endeavor. Design/methodology/approach According to “3D Printing Market in Education”, which reports on the anticipated development of 3D printing in the educational market for 2015-2019, 3D printing is expected to grow at a compound annual growth rate of 45 per cent (Business Wire). Findings In 2012, an article in The Economist declared 3D printing “the third industrial revolution”. The following year, President Obama, in his State of the Union address lauded 3D printing saying, “A once shuttered warehouse is now a state-of-the-art lab where new workers are mastering the 3D printing that has the potential to revolutionize the way we make almost everything” (Gross, 2013). Originality/value In China, 3D printer manufacturer Tiertime estimates that “90 per cent of its domestic market share comes from school laboratories, which need desktop 3D printers so students can learn, experience and design” (China taps 3D printing consumer market, 2015).

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abrar Malik ◽  
Mir Irfan Ul Haq ◽  
Ankush Raina ◽  
Kapil Gupta

Purpose Environmental degradation has emerged as one of the major limitations of industrial revolution and has led to an increased focus towards developing sustainable strategies and techniques. This paper aims to highlight the sustainability aspects of three-dimensional (3D) printing technology that helps towards a better implementation of Industry 4.0. It also aims to provide a brief picture of relationships between 3D printing, Industry 4.0 and sustainability. The major goal is to facilitate the researchers, scholars, engineers and recommend further research, development and innovations in the field. Design/methodology/approach The various enabling factors for implementation of Industry 4.0 are discussed in detail. Some barriers to incorporation of 3D Printing, its applications areas and global market scenario are also discussed. A through literature review has been done to study the detailed relationships between 3D printing, Industry 4.0 and sustainability. Findings The technological benefits of 3D printing are many such as weight savings, waste minimization and energy savings. Further, the production of new 3D printable materials with improved features helps in reducing the wastage of material during the process. 3D printing if used at a large scale would help industries to implement the concept of Industry 4.0. Originality/value This paper focuses on discussing technological revolution under Industry 4.0 and incorporates 3D printing-type technologies that largely change the product manufacturing scenario. The interrelationships between 3D printing, Industry 4.0 and sustainability have been discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sapam Ningthemba Singh ◽  
Vavilada Satya Swamy Venkatesh ◽  
Ashish Bhalchandra Deoghare

Purpose During the COVID-19 pandemic, the three-dimensional (3D) printing community is actively participating to address the supply chain gap of essential medical supplies such as face masks, face shields, door adapters, test swabs and ventilator valves. This paper aims to present a comprehensive study on the role of 3D printing during the coronavirus (COVID-19) pandemic, its safety and its challenges. Design/methodology/approach This review paper focuses on the applications of 3D printing in the fight against COVID-19 along with the safety and challenges associated with 3D printing to fight COVID-19. The literature presented in this paper is collected from the journal indexing engines including Scopus, Google Scholar, ResearchGate, PubMed, Web of Science, etc. The main keywords used for searches were 3D printing COVID-19, Safety of 3D printed parts, Sustainability of 3D printing, etc. Further possible iterations of the keywords were used to collect the literature. Findings The applications of 3D printing in the fight against COVID-19 are 3D printed face masks, shields, ventilator valves, test swabs, drug deliveries and hands-free door adapters. As most of these measures are implemented hastily, the safety and reliability of these parts often lacked approval. The safety concerns include the safety of the printed parts, operators and secondary personnel such as the workers in material preparation and transportation. The future challenges include sustainability of the process, long term supply chain, intellectual property and royalty-free models, etc. Originality/value This paper presents a comprehensive study on the applications of 3D printing in the fight against COVID-19 with emphasis on the safety and challenges in it.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yangwei Wang ◽  
Peilun Lv ◽  
Jian Li ◽  
Liying Yu ◽  
Guodong Yuan ◽  
...  

Purpose This paper aims to propose a suitable atomizing solidification chitosan (CS) gel liquid extrusion molding technology for the three dimensional (3D) printing method, and experiments verify the feasibility of this method. Design/methodology/approach This paper mainly uses experimental means, combined with theoretical research. The preparation method, solidification forming method and 3D printing method of CS gel solution were studied. The CS gel printing mechanism and printing error sources are analyzed on the basis of the CS gel ink printing results, printing performance with different ratios of components by constructing a gel print prototype, experiments evaluating the CS gel printing technology and the effects of the process parameters on the scaffold formation. Findings CS printing ink was prepared; the optimal formula was found; the 3 D printing experiment of CS was completed; the optimal printing parameters were obtained; and the reliability of the forming prototype, printing ink and gel printing process was verified, which allowed for the possibility to apply the 3 D printing technology to the manufacturing of a CS gel structure. Originality/value This study can provide theoretical and technical support for the potential application of CS 3 D printed gels in tissue engineering.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yuezong Wang ◽  
Jinghui Liu ◽  
Mengfei Guo ◽  
LiuQIan Wang

Purpose A three-dimensional (3D) printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. The purpose of this study is to analyze the influence of such errors on printing accuracy and printing quality for delta-robot 3D printer. Design/methodology/approach First, the kinematic model of a delta-robot 3D printer with an ideal geometric structure is proposed by using vector analysis. Then, the normal kinematic model of a nonideal delta-robot 3D robot with tilted vertical beams is derived based on the above ideal kinematic model. Finally, a 3D printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. Findings The results show that tilted vertical beams can indeed cause 3D printing errors and further influence the 3D printing quality of the final products and that the 3D printing errors of tilted vertical beams are related to the rotation angles of the tilted vertical beams. The larger the rotation angles of the tilted vertical beams are, the greater the geometric deformations of the printed structures. Originality/value Three vertical beams and six horizontal beams constitute the supporting parts of the frame of a delta-robot 3D printer. In this paper, the orientations of tilted vertical beams are shown to have a significant influence on 3D printing accuracy. However, the effect of tilted vertical beams on 3D printing accuracy is difficult to capture by instruments. To reveal the 3D printing error mechanisms under the condition of tilted vertical beams, the error generation mechanism and the quantitative influence of tilted vertical beams on 3D printing accuracy are studied by simulating the parallel motion mechanism of a delta-robot 3D printer with tilted vertical beams.


2019 ◽  
Vol 25 (3) ◽  
pp. 496-514 ◽  
Author(s):  
Nataraj Poomathi ◽  
Sunpreet Singh ◽  
Chander Prakash ◽  
Rajkumar V. Patil ◽  
P.T. Perumal ◽  
...  

Purpose Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of medicines, especially in ophthalmology. The three-dimensional (3D) printing tools have been widely used in different applications, from surgical planning procedures to 3D models for certain highly delicate organs (such as: eye and heart). The purpose of this paper is to review the dedicated research efforts that so far have been made to highlight applications of 3D printing in the field of ophthalmology. Design/methodology/approach In this paper, the state-of-the-art review has been summarized for bioprinters, biomaterials and methodologies adopted to cure eye diseases. This paper starts with fundamental discussions and gradually leads toward the summary and future trends by covering almost all the research insights. For better understanding of the readers, various tables and figures have also been incorporated. Findings The usages of bioprinted surgical models have shown to be helpful in shortening the time of operation and decreasing the risk of donor, and hence, it could boost certain surgical effects. This demonstrates the wide use of bioprinting to design more precise biological research models for research in broader range of applications such as in generating blood vessels and cardiac tissue. Although bioprinting has not created a significant impact in ophthalmology, in recent times, these technologies could be helpful in treating several ocular disorders in the near future. Originality/value This review work emphasizes the understanding of 3D printing technologies, in the light of which these can be applied in ophthalmology to achieve successful treatment of eye diseases.


2018 ◽  
Vol 24 (5) ◽  
pp. 801-812 ◽  
Author(s):  
Yuran Jin ◽  
Xin Li ◽  
R. Ian Campbell ◽  
Shoufeng Ji

Purpose 3D printing is believed to be driving the third industrial revolution. However, a scientometric visualizing of 3D printing research and an exploration its hotspots and emerging trends are lacking. This study aims to promote the theory development of 3D printing, help researchers to determine the research direction and provide a reference for enterprises and government to plan the development of 3D printing industry by a comprehensive understanding of the hotspots and trends of 3D printing. Design/methodology/approach Based on the theory of scientometrics, 2,769 literatures on the 3D printing theme were found in the Web of Science Core Collection’ Science Citation Index Expanded (SCI-EXPANDED) index between 1995-2016. These were analyzed to explore the research hotspots and emerging trends of 3D printing with the software CiteSpaceIII. Findings Hotspots had appeared first in 1993, grew rapidly from 2005 and peaked in 2013; hotspots in the “medical field” appeared earliest and have remained extremely active; hotspots have evolved from “drug”, “printer”, “rapid prototyping” and “3D printing” in the 1990s, through “laser-induced consolidation”, “scaffolds”, “sintering” and “metal matrix composites” in the 2000s, to the current hotspots of “stereolithography”, “laser additive manufacturing”, “medical images”; “3D bioprinting”, “titanium”, “Cstem cell” and “chemical reaction” were the emerging hotspots in recent years; “Commercial operation” and “fusion with emerging technology such as big data” may create future hotspots. Research limitations/implications It is hard to avoid the possibility of missing important research results on 3D printing. The relevant records could be missing if the query phrases for topic search do not appear in records. Besides, to improve the quality of data, this study selected articles and reviews as the research objects, which may also omit some records. Originality/value First, this is the first paper visualizing the hotspots and emerging trends of 3D printing using scientometric tools. Second, not only “burst reference” and “burst keywords” but also “cluster” and “landmark article” are selected as the evaluation factors to judge the hotspots and trends of a domain comprehensively. Third, overall perspective of hotspots and trends of 3D printing is put forward for the first time.


2020 ◽  
Vol 41 (6/7) ◽  
pp. 355-368 ◽  
Author(s):  
Dennis N. Ocholla ◽  
Lyudmila Ocholla

PurposeIn this paper, we refer to the World Economic Forum in Davos, Switzerland, in 2016, where the concept of the Fourth Industrial Revolution (4IR) was coined by Klaus Schwab, with the reference that it would be building on “the Third, the digital revolution” and would be “characterized by a fusion of technologies that is blurring the lines between the physical, digital, and biological spheres”. While acknowledging that the 4IR will impact on everything, everywhere, including research and libraries, we conceptualize 4IR, and we compare current academic library services/trends in South Africa with 4IR requirements, through the analysis of 26 public university library websites.Design/methodology/approachBesides conceptualization of 4IR, a content analysis of websites of 26 public universities’ libraries in South Africa was achieved followed up with verification of the data by respective libraries through a preliminary research report circulated to them by email. 23 areas were identified as the trends in academic libraries, which included free Wi-Fi in the libraries; 24/7 study areas and access to library resources on and off campus; research commons; makerspace; borrowing ICTs (e.g. laptops); e-resources; e-catalogues; research data services (RDS; RDM, IR); open scholarship; information literacy and reference/bibliographic tools, library as a publisher, among others. Data obtained were captured in Excel and analyzed by the research questions.FindingsThe 4IR concept does not occur often in literature, in relation to academic libraries, but it is implied. The findings show that the libraries are responding well to the revolution through their services, with remarkable innovation and creativity on display. There was a 64% presence of the analyzed trends/services in the libraries, with emerging trends/services such as library as a publisher (4%), robotics/AI (4%), makerspace (8%), RDS (27%), borrowing of ICTs/devices (19%) and user experience (19%) scoring low, while information literacy and digital scholarship (e.g. IR) (88%), e-catalogue and e-resources (92%), group study area (85%) and off campus access (77%) scoring above 75%. The scatter of the trends/services among the university libraries is noted for knowledge sharing of best practice.Research limitations/implicationsIn order to improve accordance with trends, academic libraries have to be better resourced, accessed and used, as well as improve web visibility. The study expects library services to be responsive, resourced and accessible anytime and anywhere, and it provides a conceptual framework and a benchmark for further research and exploration in the country, region and perhaps elsewhere.Practical implicationsThe study can be used for benchmarking current and future academic library services in Africa. The conceptual framework provides an agenda for theoretical discussions and deliberations.Social implicationsThe trends, framework and 4IR representations in the study can inform theory and practice in LIS, particularly in Africa.Originality/valueLinking 4IR to current and future library services provides a tool for academic libraries services benchmarking and development and provides a conceptual framework for theoretical and practical debates and implementation. The study is quite current and appropriate for the ongoing discussions of 4IR implications to academic libraries.


2020 ◽  
Vol 45 (1) ◽  
pp. 30-40 ◽  
Author(s):  
A Kessler ◽  
R Hickel ◽  
M Reymus

SUMMARY Three-dimensional (3D) printing is a rapidly developing technology that has gained widespread acceptance in dentistry. Compared to conventional (lost-wax technique) and subtractive computer numeric controlled methods, 3D printing offers process engineering advantages. Materials such as plastics, metals, and ceramics can be manufactured using various techniques. 3D printing was introduced over three decades ago. Today, it is experiencing rapid development due to the expiration of many patents and is often described as the key technology of the next industrial revolution. The transition to its clinical application in dentistry is highly dependent on the available materials, which must not only provide the required accuracy but also the necessary biological and physical properties. The aim of this work is to provide an up-to-date overview of the different printing techniques: stereolithography, digital light processing, photopolymer jetting, material jetting, binder jetting, selective laser sintering, selective laser melting, and fused filament fabrication. Additionally, particular attention is paid to the materials used in dentistry and their clinical application.


2017 ◽  
Vol 23 (6) ◽  
pp. 1020-1031 ◽  
Author(s):  
Miguel Fernandez-Vicente ◽  
Ana Escario Chust ◽  
Andres Conejero

Purpose The purpose of this paper is to describe a novel design workflow for the digital fabrication of custom-made orthoses (CMIO). It is intended to provide an easier process for clinical practitioners and orthotic technicians alike. It further functions to reduce the dependency of the operators’ abilities and skills. Design/methodology/approach The technical assessment covers low-cost three-dimensional (3D) scanning, free computer-aided design (CAD) software, and desktop 3D printing and acetone vapour finishing. To analyse its viability, a cost comparison was carried out between the proposed workflow and the traditional CMIO manufacture method. Findings The results show that the proposed workflow is a technically feasible and cost-effective solution to improve upon the traditional process of design and manufacture of custom-made static trapeziometacarpal (TMC) orthoses. Further studies are needed for ensuring a clinically feasible approach and for estimating the efficacy of the method for the recovery process in patients. Social implications The feasibility of the process increases the impact of the study, as the great accessibility to this type of 3D printers makes the digital fabrication method easier to be adopted by operators. Originality/value Although some research has been conducted on digital fabrication of CMIO, few studies have investigated the use of desktop 3D printing in any systematic way. This study provides a first step in the exploration of a new design workflow using low-cost digital fabrication tools combined with non-manual finishing.


Subject 3D printing and its ramifications for commodities. Significance General Electric (GE) calls 3D printing "the next industrial revolution". The technique promises to disrupt the manufacturing process, including supply and distribution chains, and to eliminate waste while producing superior and otherwise unmakeable components and reducing marginal costs. 3D printing currently consumes negligible amounts of commodities, but, as adoption expands, it may start affecting commodity supply chains. Impacts Wide adoption of 3D printing will reduce manufacturing waste and idle inventory. 3D printing will enable the development and use of smart materials. Printable electronics could change the usage and functionality of some materials. The potentially limitless customisation of mass-market products will spawn new digital design-to-distribution production platforms.


Sign in / Sign up

Export Citation Format

Share Document