A novel design space concept for design of concrete foundation supporting chemical reactors

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Osama Bedair

PurposeThis paper presents a novel concept for design of concrete support system for chemical reactors used in refineries and petrochemical plants. Graphical method is described that can be used to size the concrete base and piling system. Recommendations are also provided to optimize the parameters required for the design. The procedure is illustrated for design of two reactor models commonly used in gas recovery units.Design/methodology/approachDesign space representation for the foundation system is described for chemical reactors with variable heights. The key points of the design graph are extracted from the numerical finite element models. The reactor load is idealized at discrete points to transfer the loads to the piles. Bilateral spring system is used to model the soil restrains.FindingsThe graphical approach is economical and provides the design engineer the flexibility to select the foundation parameters from wide range of options.Practical implicationsThe concept presented in the paper can be utilized by engineers in the industry for design of chemical reactors. It must be noted that little guidelines are currently available in practice addressing the structural design aspects.Originality/valueA novel concept is presented in this paper based on significant industrial design experience of reactor supports. Using the described method leads to significant cost savings in material quantity and engineering time.

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2931
Author(s):  
Soumya Banerjee ◽  
Ek Adhikari ◽  
Pitambar Sapkota ◽  
Amal Sebastian ◽  
Sylwia Ptasinska

Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar cells, and photocatalysis, which has made it an extremely popular research topic for decades. Here, we provide an overview of non-thermal APP deposition techniques for TiO2 thin film, some historical background, and some very recent findings and developments. First, we define non-thermal plasma, and then we describe the advantages of APP deposition. In addition, we explain the importance of TiO2 and then describe briefly the three deposition techniques used to date. We also compare the structural, electronic, and optical properties of TiO2 films deposited by different APP methods. Lastly, we examine the status of current research related to the effects of such deposition parameters as plasma power, feed gas, bias voltage, gas flow rate, and substrate temperature on the deposition rate, crystal phase, and other film properties. The examples given cover the most common APP deposition techniques for TiO2 growth to understand their advantages for specific applications. In addition, we discuss the important challenges that APP deposition is facing in this rapidly growing field.


Author(s):  
Allan Matthews ◽  
Adrian Leyland

Over the past twenty years or so, there have been major steps forward both in the understanding of tribological mechanisms and in the development of new coating and treatment techniques to better “engineer” surfaces to achieve reductions in wear and friction. Particularly in the coatings tribology field, improved techniques and theories which enable us to study and understand the mechanisms occurring at the “nano”, “micro” and “macro” scale have allowed considerable progress to be made in (for example) understanding contact mechanisms and the influence of “third bodies” [1–5]. Over the same period, we have seen the emergence of the discipline which we now call “Surface Engineering”, by which, ideally, a bulk material (the ‘substrate’) and a coating are combined in a way that provides a cost-effective performance enhancement of which neither would be capable without the presence of the other. It is probably fair to say that the emergence and recognition of Surface Engineering as a field in its own right has been driven largely by the availability of “plasma”-based coating and treatment processes, which can provide surface properties which were previously unachievable. In particular, plasma-assisted (PA) physical vapour deposition (PVD) techniques, allowing wear-resistant ceramic thin films such as titanium nitride (TiN) to be deposited on a wide range of industrial tooling, gave a step-change in industrial productivity and manufactured product quality, and caught the attention of engineers due to the remarkable cost savings and performance improvements obtained. Subsequently, so-called 2nd- and 3rd-generation ceramic coatings (with multilayered or nanocomposite structures) have recently been developed [6–9], to further extend tool performance — the objective typically being to increase coating hardness further, or extend hardness capabilities to higher temperatures.


2015 ◽  
Vol 81 (7) ◽  
pp. 2481-2488 ◽  
Author(s):  
Volker Winstel ◽  
Petra Kühner ◽  
Bernhard Krismer ◽  
Andreas Peschel ◽  
Holger Rohde

ABSTRACTGenetic manipulation of emerging bacterial pathogens, such as coagulase-negative staphylococci (CoNS), is a major hurdle in clinical and basic microbiological research. Strong genetic barriers, such as restriction modification systems or clustered regularly interspaced short palindromic repeats (CRISPR), usually interfere with available techniques for DNA transformation and therefore complicate manipulation of CoNS or render it impossible. Thus, current knowledge of pathogenicity and virulence determinants of CoNS is very limited. Here, a rapid, efficient, and highly reliable technique is presented to transfer plasmid DNA essential for genetic engineering to important CoNS pathogens from a uniqueStaphylococcus aureusstrain via a specificS. aureusbacteriophage, Φ187. Even strains refractory to electroporation can be transduced by this technique once donor and recipient strains share similar Φ187 receptor properties. As a proof of principle, this technique was used to delete the alternative transcription factor sigma B (SigB) via allelic replacement in nasal and clinicalStaphylococcus epidermidisisolates at high efficiencies. The described approach will allow the genetic manipulation of a wide range of CoNS pathogens and might inspire research activities to manipulate other important pathogens in a similar fashion.


2017 ◽  
Vol 86 (3) ◽  
Author(s):  
Susan L. Brockmeier ◽  
Crystal L. Loving ◽  
Tracy L. Nicholson ◽  
Jinhong Wang ◽  
Sarah E. Peters ◽  
...  

ABSTRACT Streptococcus suis is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of S. suis protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent S. suis . While subunit vaccination with the S. suis proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent S. suis , the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different S. suis serotypes, indicating a potential for cross protection.


2015 ◽  
Vol 19 (3) ◽  
pp. 433-455 ◽  
Author(s):  
Christina Ling-hsing Chang ◽  
Tung-Ching Lin

Purpose – The purpose of the study is to focus on the enhancement of knowledge management (KM) performance and the relationship between organizational culture and KM process intention of individuals because of the diversity of organizational cultures (which include results-oriented, tightly controlled, job-oriented, closed system and professional-oriented cultures). Knowledge is a primary resource in organizations. If firms are able to effectively manage their knowledge resources, then a wide range of benefits can be reaped such as improved corporate efficiency, effectiveness, innovation and customer service. Design/methodology/approach – The survey methodology, which has the ability to enhance generalization of results (Dooley, 2001), was used to collect the data utilized in the testing of the research hypotheses. Findings – Results- and job-oriented cultures have positive effects on employee intention in the KM process (creation, storage, transfer and application), whereas a tightly controlled culture has negative effects. Research limitations/implications – However, it would have been better to use a longitudinal study to collect useful long-term data to understand how the KM process would be influenced when organizational culture dimensions are changed through/by management. This is the first limitation of this study. According to Mason and Pauleen (2003), KM culture is a powerful predictor of individual knowledge-sharing behavior, which is not included in this study. Thus, this is the second limitation of this paper. Moreover, national culture could be an important issue in the KM process (Jacks et al., 2012), which is the third limitation of this paper for not comprising it. Practical implications – In researchers’ point of view, results- and job-oriented cultures have positive effects, whereas a tightly controlled culture has a negative effect on the KM process intention of the individual. These findings provide evidences that challenge the perspective of Kayworth and Leidner (2003) on this issue. As for practitioners, management has a direction to modify their organizational culture to improve the performance of KM process. Social implications – Both behavioral and value perspectives of the organizational cultural dimensions (results-oriented, tightly control, job-oriented, sociability, solidarity, need for achievement and democracy) should be examined to ascertain their effects firstly on KM culture and then on the KM process intention of the individual. It is hoped that the current study will spawn future investigations that lead to the development of an integrated model which includes organizational culture, KM culture and the KM process intention of the individual. Originality/value – The results-oriented, loosely controlled and job-oriented cultures will improve the effectiveness of the KM process and will also increase employees’ satisfaction and willingness to stay with the organization.


Kybernetes ◽  
2019 ◽  
Vol 48 (7) ◽  
pp. 1463-1477
Author(s):  
Olga Marino ◽  
Jaime Andres Gutierrez ◽  
Sandra Aguirre

Purpose This paper aims to propose and evaluate a pedagogically sound and innovative strategy to teach a higher education course that prepares future professionals to intelligently use information and communication technologies (ICTs) in their personal and professional lives. Design/methodology/approach The conceptual framework used for the design of the course was the socio-constructivism and activity theories. The implementation of the course was evaluated using the intrinsic case study methodology by including several instruments. Findings The pedagogical strategy proposed proved to be sound, as the evaluation showed that students were able to describe, use and propose innovative uses of a wide range of cutting-edge technologies in their both everyday lives and professional settings; they also had the skills to analyse the opportunities and challenges that these presented. Moreover, students liked this innovative way of learning and ended with a positive attitude towards ICT. Originality/value Although several courses prepare students to be digital citizens or use ICT to enhance the teaching-learning process, millennials are ill prepared to use cutting-edge technologies in an innovative, responsible and critical way in their future professions. The course that was designed is original in that it goes beyond preparing digital citizens to prepare professionals in any domain to use ICT in an informed and responsible way. Moreover, it is a documented, successful example of an undergraduate universal course in a highly important current society dimension. The authors believe that its pedagogical proposal could be transferred to courses dealing with other global issues such as the environment, economy and peace.


Author(s):  
Abdelraheem M. Aly

Purpose This paper aims to adopt incompressible smoothed particle hydrodynamics (ISPH) method to simulate MHD double-diffusive natural convection in a cavity containing an oscillating pipe and filled with nanofluid. Design/methodology/approach The Lagrangian description of the governing partial differential equations are solved numerically using improved ISPH method. The inner oscillating pipe is divided into two different pipes as an open and a closed pipe. The sidewalls of the cavity are cooled with a lower concentration C_c and the horizontal walls are adiabatic. The inner pipe is heated with higher concentration C_h. The analysis has been conducted for the two different cases of inner oscillating pipes under the effects of wide range of governing parameters. Findings It is found that a suitable oscillating pipe makes a well convective transport inside a cavity. Presence of the oscillating pipe has effects on the heat and mass transfer and fluid intensity inside a cavity. Hartman parameter suppresses the velocity and weakens the maximum values of the stream function. An increase on Hartman, Lewis and solid volume fraction parameters leads to an increase on average Nusselt number on an oscillating pipe and left cavity wall. Average Sherwood number on an oscillating pipe and left cavity wall decreases as Hartman parameter increases. Originality/value The main objective of this work is to study the MHD double-diffusive natural convection of a nanofluid in a square cavity containing an oscillating pipe using improved ISPH method.


Author(s):  
Amin Rahmat ◽  
Hossein Nasiri ◽  
Marjan Goodarzi ◽  
Ehsan Heidaryan

Purpose This paper aims to introduce a numerical investigation of aquatic locomotion using the smoothed particle hydrodynamics (SPH) method. Design/methodology/approach To model this problem, a simple improved SPH algorithm is presented that can handle complex geometries using updatable dummy particles. The computational code is validated by solving the flow over a two-dimensional cylinder and comparing its drag coefficient for two different Reynolds numbers with those in the literature. Findings Additionally, the drag coefficient and vortices created behind the aquatic swimmer are quantitatively and qualitatively compared with available credential data. Afterward, the flow over an aquatic swimmer is simulated for a wide range of Reynolds and Strouhal numbers, as well as for the amplitude envelope. Moreover, comprehensive discussions on drag coefficient and vorticity patterns behind the aquatic are made. Originality/value It is found that by increasing both Reynolds and Strouhal numbers separately, the anguilliform motion approaches the self-propulsion condition; however, the vortices show different pattern with these increments.


2015 ◽  
Vol 14 (4) ◽  
pp. 118-123 ◽  
Author(s):  
Lauren Trees

Purpose – The purpose of this paper is to present enterprise social networking and gamification as two potential tools to help organizations engage Millennial employees in collaboration and learning. Design/methodology/approach – The research provides general descriptions of enterprise social networking and gamification approaches, shares data on adoption of these approaches from APQC’s “2015 Knowledge Management Priorities Data Report” (based on a January 2015 survey of 524 knowledge management professionals) and includes four company examples adapted from APQC’s Connecting People to Content and Transferring and Applying Critical Knowledge best practices studies. The methodology for APQC’s best practices studies involves screening 50 or more organizations with potential best practices in a given research scope area and identifying five or six with proven best practices. APQC then conducts detailed site visits with the selected organizations and publishes case studies based on those site visits. Findings – Enterprise social networking platforms are in place at 50 per cent of organizations, with another 25 per cent planning to implement them by the end of 2015. By providing near-immediate access to information and answers, enterprise social networking helps Millennials learn the ropes at their new workplaces, gives them direct access to more knowledgeable colleagues who can assist and mentor them, and helps them improve their business outcomes by reusing knowledge and lessons learned across projects. Younger workers can also harness the power of social networking to create a sense of belonging and build their reputations in large, dispersed firms, where it is particularly difficult for them to gain visibility. A recent APQC survey indicates that 54 per cent of organizations either currently employ gamification to encourage collaboration or expect to implement it within the next three years. The rush to gamify the enterprise is, at least in part, a reflection of employers’ desire to satisfy Millennials and make them feel connected to a community of co-workers. Although games appeal to a wide range of age groups, Millennials grew up with digital interaction and tend to prefer environments that emphasize teamwork, social learning and frequent feedback – all of which can be delivered through gamification. Originality/value – The value of this paper is to introduce the value of and relationship between enterprise social networking and gamification platforms to human resource (HR) professionals looking to increase engagement and retention rates for Millennial employees.


2015 ◽  
Vol 45 (1) ◽  
pp. 174-188 ◽  
Author(s):  
Elisabeth Lind Melbye ◽  
Håvard Hansen

Purpose – The majority of previous studies on parental feeding practices have focused on the effect of controlling feeding strategies on child eating and weight (i.e. parental influence on children). The present study turns the arrow in the opposite direction, and it aims to test a child-responsive model by exploring the process in which child weight status might influence parental feeding practices, addressing potential mediating effects of parental concern for child weight (i.e. child influence on parents). Design/methodology/approach – A cross-sectional survey was performed among parents of 10- to 12-year olds (n = 963). The survey questionnaire included measures of parental feeding practices and parents’ reports of child weight and height. Stepwise regressions were performed to reveal potential mediating effects of parental concern for child weight status on the associations between child BMI and a wide range of parental feeding practices. Findings – Our results suggest a mediating effect of parental concern for child overweight on the associations between child body mass index and controlling feeding practices such as restriction for weight and health purposes and responsibility for determining child portion sizes. Originality/value – This study provides an extension of previous research on parental feeding–child weight relationship. It includes a wider spectrum of feeding variables, and integrates parental concern for both child who is overweight and child who is underweight as potential mediators of the associations between child weight and parental feeding practices. Moreover, it has its focus on preadolescent children, while previous studies have focused on infants and young children.


Sign in / Sign up

Export Citation Format

Share Document