Options for additive rapid prototyping methods (3D printing) in MEMS technology

2014 ◽  
Vol 20 (5) ◽  
pp. 403-412 ◽  
Author(s):  
Victor A. Lifton ◽  
Gregory Lifton ◽  
Steve Simon

Purpose – This study aims to investigate the options for additive rapid prototyping methods in microelectromechanical systems (MEMS) technology. Additive rapid prototyping technologies, such as stereolithography (SLA), fused deposition modeling (FDM) and selective laser sintering (SLS), all commonly known as three-dimensional (3D) printing methods, are reviewed and compared with the resolution requirements of the traditional MEMS fabrication methods. Design/methodology/approach – In the 3D print approach, the entire assembly, parts and prototypes are built using various plastic and metal materials directly from the software file input, completely bypassing any additional processing steps. The review highlights their potential place in the overall process flow to reduce the complexity of traditional microfabrication and long processing cycles needed to test multiple prototypes before the final design is set. Findings – Additive manufacturing (AM) is a promising manufacturing technique in micro-device technology. Practical implications – In the current state of 3D printing, microfluidic and lab-on-a-chip devices for fluid handling and manipulation appear to be the most compatible with the 3D print methods, given their fairly coarse minimum feature size of 50-500 μm. Future directions in the 3D materials and method development are identified, such as adhesion and material compatibility studies of the 3D print materials, wafer-level printing and conductive materials development. One of the most important goals should be the drive toward finer resolution and layer thickness (1-10 μm) to stimulate the use of the 3D printing in a wider array of MEMS devices. Originality/value – The review combines two discrete disciplines, microfabrication and AM, and shows how microfabrication and micro-device commercialization may benefit from employing methods developed by the AM community.

2018 ◽  
Vol 24 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Minhua Yang ◽  
Xin-guang Lv ◽  
Xiao-jie Liu ◽  
Jia-qing Zhang

Purpose This paper aims to present a method of color three-dimensional (3D) printing based on color adherence. Design/methodology/approach First, experiments of the color effects of 3D printings using different carriers and different printing methods were performed. Second, the color of a specific point could be calculated through a theory of dimension-reducing, and the color distribution of 3D model was transformed from 3D to 1D color line corresponding with 3D print sequence. At last, the color lines, which were printed on a PE film by silk-screen printing, was carried by a filament and then printed through a fused deposition modeling 3D printer. Findings The printing ink and PE film are suitable as the pigment and carrier under this investigation, respectively. Based on an idea of reducing dimension, the method of 3D color printing through adhering color to a filament is realized. The color saturation of the sample was relatively high through the method. Research limitations/implications It is hard to avoid that there may be some residual color in the nozzle through this method, and the purity of following color will be affected. As a result, continuous improvements should be made to perfect the method. Practical implications An approach of 3D color printing is described in detail, and what kind of model is more applicable is discussed particularly. Originality/value This approach is implemented to print color 3D objects with just one nozzle by means of color adherence. That is, printing the 3D objects using the filament is carried out with 1D color line, which is printed by a traditional printing method.


2018 ◽  
Vol 24 (1) ◽  
pp. 106-113 ◽  
Author(s):  
Bo Li ◽  
Lifan Meng ◽  
Hongyu Wang ◽  
Jing Li ◽  
Chunmei Liu

Purpose The purpose of this paper is to investigate the process of rapid prototyping eddy current sensors using 3D printing technology. Making full use of the advantages of 3D printing, the authors study on a new method for fabrication of an eddy current sensor. Design/methodology/approach In this paper, the authors establish a 3D model using SolidWorks. And the eddy current sensor is printed by the fused deposition modeling method. Findings Measurement results show that the 3D printing eddy current sensor has a wider linear measurement range and better linearity than the traditional manufacturing sensor. Compared to traditional eddy current sensor fabrication method, this 3D printed sensor can be fabricated at a lower cost, and the fabrication process is more convenient and faster. Practical implications This demonstrated 3D printing process can be applied to the 3D printing of sensors of more sophisticated structures that are difficult to fabricate using conventional techniques. Originality/value In this work, the process of rapid prototyping eddy current sensors using 3D printing is presented. Sensors fabricated with the 3D printing possess lots of merits than traditional manufactures. 3D printed sensors can be customized according to the configuration of the overall system, thus reducing the demand of sensor's rigid mounting interfaces. The 3D printing also reduce design costs as well as shortens the development cycle. This allows for quick translation of a design from concept to a useful device.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Elvira Aura-Castro ◽  
Carmen Díaz-Marín ◽  
Xavier Mas-Barberà ◽  
Miguel Sánchez ◽  
Eduardo Vendrell Vidal

Purpose The purpose of this paper is to characterize three-dimensional (3D) printing filaments commonly used in fused deposition modeling (FDM) to determine their viability for restoration and conservation treatments. Design/methodology/approach Eight current filaments for FDM from six polymeric materials have been characterized to determine their suitability for restoration and conservation treatments. For testing these filaments, specimens are printed with acrylonitrile-butadiene-styrene; polylactic acid; polylactic acid with CaCO3 (E.P.); polyethylene terephthalate glycol; polypropylene; and high-impact polystyrene. Suitability of a filament was verified using the Oddy test by detecting the action of volatile pollutants released from the filaments. The morphological and color changes were observed after allowing them to degrade under the exposure of UV radiation. The samples were then analyzed using Fourier-transform infrared spectroscopy. In addition, gas chromatography-mass spectroscopy technique was applied to complete the characterization of the printed filaments. Findings Materials investigated are suitable for restoration purposes ensuring long-term stability. Rapid prototyping using FDM is appropriate for restoring sensitive archaeological objects allowing reconstruction of parts and decreasing risk while manipulating delicate artifacts. Originality/value Rapid prototyping using FDM was chosen for the restoration of a fragile and sensitive archaeological glass bowl from Manises Ceramic Museum.


2020 ◽  
Vol 62 (7) ◽  
pp. 727-732
Author(s):  
L. Zárybnická ◽  
D. Machová ◽  
K. Dvořák

Abstract This paper presents the effect of additives on the quality of a product created by 3D print. The product is created by the most widely used 3D printing method - Fused Deposition Modeling (FDM). Polylactic acid (PLA) filaments are tested without and with the addition of carbon fibers or copper. The specimens are characterized by different methods, such as mechanical testing, measuring roughness by digital microscope with a large depth of field and thermal analysis. In fact, FDM is a problematic process with numerous criterions that affect printing quality. Printing parameters such as print temperature, pad temperature, print speed for 3D printing, printing orientation etc. have an important impact on the performance and quality of FDM components. Due to the correct parameters, the product of the required quality with a longer service life is obtained. The results of testing show that the quantity and choice of the right ingredient has a major impact on the mechanical properties and overall quality of the investigated product.


Author(s):  
Tran Linh Khuong ◽  
Zhao Gang ◽  
Muhammad Farid ◽  
Rao Yu ◽  
Zhuang Zhi Sun ◽  
...  

Biomimetic robots borrow their structure, senses and behavior from animals, such as humans or insects, and plants. Biomimetic design is design ofa machine, a robot or a system in engineeringdomain thatmimics operational and/orbehavioral model of a biological system in nature. 3D printing technology has another name as rapid prototyping technology. Currently it is being developed fastly and widely and is applied in many fields like the jewelry, footwear, industrial design, architecture, engineering and construction, automotive, aerospace, dental and medical industry, education, geographic information system, civil engineering, guns. 3D printing technology is able to manufacture complicated, sophisticated details that the traditional processing method cannot manufacture. Therefore, 3D printing technology can be seen as an effective tool in biomimetic, which can accurately simulate most of the biological structure. Fused Deposition Modeling (FDM) is a technology of the typical rapid prototyping. The main content of the article is the focusing on tensile strength test of the ABS-Acrylonitrile Butadiene Styrene material after using Fused Deposition Modeling (FDM) technology, concretization after it’s printed by UP2! 3D printer. The article focuses on two basic features which are Tensile Strength and Determination of flexural properties.


2018 ◽  
Vol 24 (2) ◽  
pp. 261-269 ◽  
Author(s):  
Rong Wang ◽  
Jianzhong Shang ◽  
Xin Li ◽  
Zhuo Wang ◽  
Zirong Luo

Purpose This paper aims to present a new topology method in designing the lightweight and complex structures for 3D printing. Design/methodology/approach Computer-aided design (CAD) and topology design are the two main approaches for 3D truss lattices designing in 3D printing. Though these two ways have their own advantages and have been used by the researchers in different engineering situations, these two methods seem to be incompatible. A novel topology method is presented in this paper which can combine the merits of both CAD and topology design. It is generally based on adding materials to insufficient parts in a given structure so the resulting topology evolves toward an optimum. Findings By using the topology method, an optimized-Kagome structure is designed and both 3D original-Kagome structure and 3D optimized-Kagome structure are manufactured by fused deposition modeling (FDM) 3D printer with ABS and the compression tests results show that the 3D optimized-Kagome has a higher specific stiffness and strength than the original one. Originality/value The presented topology method is the first work that using the original structure-based topology algorithm other than a boundary condition-based topology algorithm for 3D printing lattice and it can be considered as general way to optimize a commonly used light-weight lattice structure in strength and stiffness.


2015 ◽  
Vol 21 (3) ◽  
pp. 329-339 ◽  
Author(s):  
Apinya Chanthakulchan ◽  
Pisut Koomsap ◽  
Kampanat Auyson ◽  
Pitt Supaphol

Purpose – This paper aims to present the development of an electrospinning-based rapid prototyping (ESRP) technique for the fabrication of patterned scaffolds from fine fiber. Design/methodology/approach – This ESRP technique unifies rapid prototyping (RP) and electrospinning to obtain the ability of RP to create a controllable pattern and of electrospinning to create a continuous fine fiber. The technique follows RP process of fused deposition modeling, but instead of using extrusion process for fiber creation, electrospinning is applied to generate a continuous fiber from a liquid solution. A machine prototype has been constructed and used in the experiments to evaluate the technique. Findings – Three different lay-down patterns: 0°/90°, 45°/135° and 45° twists were used in the experiments. According to the experimental results, stacks of patterned layers could be created with the ESRP technique, and the fabrication process was repeatable and reproducible. However, the existing machine vibration influenced the fiber size and the ability to control straightness and gap size. Also, incomplete solidification of the fibers prior to being deposited obstructed the control of layer thickness. Improvement on vibration suppression and fiber solidification will strengthen the capability of this ESRP technique. Research limitations/implications – This research is currently limited to the introduction of the ESRP technique, to the development of the machine prototype, to the demonstration of its capability and to the evaluation of the structural properties of the fabricated patterned scaffolds. Further studies are required for better control of the patterned scaffolds and for investigation of mechanical and biological properties. Originality/value – This unification of the two processes allows not only the fabrication of controllable patterned scaffolds but also the fabrication of both woven and non-woven layers of fibers to be done on one machine.


2016 ◽  
Vol 22 (4) ◽  
pp. 636-644 ◽  
Author(s):  
Yaususi Kanada

Purpose A methodology for designing and printing three-dimensional (3D) objects with specified printing-direction using fused deposition modeling (FDM), which was proposed by a previous paper, enables the expression of natural directions, such as hair, fabric or other directed textures, in modeled objects. This paper aims to enhance this methodology for creating various shapes of generative visual objects with several specialized attributes. Design/methodology/approach The proposed enhancement consists of two new methods and a new technique. The first is a method for “deformation”. It enables deforming simple 3D models to create varieties of shapes much more easily in generative design processes. The second is the spiral/helical printing method. The print direction (filament direction) of each part of a printed object is made consistent by this method, and it also enables seamless printing results and enables low-angle overhang. The third, i.e. the light-reflection control technique, controls the properties of filament while printing with transparent polylactic acid. It enables the printed objects to reflect light brilliantly. Findings The proposed methods and technique were implemented in a Python library and evaluated by printing various shapes, and it is confirmed that they work well, and objects with attractive attributes, such as the brilliance, can be created. Research limitations/implications The methods and technique proposed in this paper are not well-suited to industrial prototyping or manufacturing that require strength or intensity. Practical implications The techniques proposed in this paper are suited for generatively producing various a small number of products with artistic or visual properties. Originality/value This paper proposes a completely different methodology for 3D printing than the conventional computer-aided design (CAD)-based methodology and enables products that cannot be created by conventional methods.


2012 ◽  
Vol 217-219 ◽  
pp. 2016-2025 ◽  
Author(s):  
Simon Shun ◽  
Noor Alam Ahmed

Rapid prototyping techniques are ideally suited to the manufacture of aerodynamics research models as these items usually consist of highly complex 3 Dimensional (3D) forms. The fabrication of complex curvatures on traditional Computer Numerical Control (CNC) machines often requires the production of additional tooling supports to allow for full machining of all surfaces. Such a necessity often results in extra cost and fabrication time, as well as a potential loss in accuracy due to any repositioning required to allow machining of internal and external features. It is often necessary to divide the model into additional sections to allow for the machining of internal features which can cause issues with mismatching of adjacent surfaces. The inclusion of small or complex internal features and hollow sections may be problematic if not impossible. In contrast, many rapid prototyping techniques eliminate most of these manufacturing issues due to the additive nature of modern 3D printing processes. Popular techniques for the rapid prototyping of polymers include Selective Laser Sintering (SLS), Fused Deposition Modeling (FDM) and stereolithography. The basic technique reduces a 3D object into a series of thin 2D slices. The 2D slices are then “printed” vertically in succession to produce the final 3D item The “slicing” technique is readily compatible with the formation of complex 3D curvatures as well as internal and hollow features. In addition, any required tooling supports are produced simultaneously with the desired item, which greatly reduces processing time and loss of accuracy due to part repositioning. The necessity to produce a model from multiple sections to allow access for machining of internal features can in many cases be reduced significantly. The characteristics intrinsic to many modern 3D printing techniques are greatly beneficial for the production of complex wind tunnel models made from polymer. The current work describes the design process and features of a wind tunnel model used for research into a novel aerodynamic flow control technique. An additive manufacturing technique was chosen as the most suitable for the rapid, accurate and simplest fabrication process for the model.


2016 ◽  
Vol 12 ◽  
pp. 2776-2783 ◽  
Author(s):  
Philip J Kitson ◽  
Stefan Glatzel ◽  
Leroy Cronin

An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic ‘programs’ which can run on similar low cost, user-constructed robotic platforms towards an ‘open-source’ regime in the area of chemical synthesis.


Sign in / Sign up

Export Citation Format

Share Document