Investigation of selected parameters effect on 3D printed sand mold properties through Taguchi method

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guili Gao ◽  
Weikun Zhang ◽  
Zhimin Du ◽  
Qingyi Liu ◽  
Yanqing Su ◽  
...  

Purpose The major concern technologies during the processing through three-dimensional printing (3DP) are the mechanical and boundary properties of sand models. The parameters such as activator content, resolution X, layer thickness and re-coater speed play a vital role in 3DP sand components. The purpose of this paper is to recommend the optimal process parameters for the best sand mold properties. Design/methodology/approach In this paper, taking the parameters of the activator content, resolution X, layer thickness and re-coater speed as the influence factors, an orthogonal test of L16(44) was designed to discuss the influences of those parameters on the mechanical and boundary properties. Three-point bending (3PB) test was used to characterize the actual bending strength, and the boundary accuracy was assessed by the deviation of the three-point bending samples compared with its design scale. Findings The experimental results showed that the resolution X and layer thickness are the main parameters affecting sand mold properties. The strength will attain its maximum when the resolution X and layer thickness are the minimum. The optimal parameters were screened and verified by the confirmation test. The optimal process parameters for best strength and less gas evolution are the activator of 0.19%, resolution X of 0.1 mm, layer thickness of 0.28 mm and re-coater speed of 210 mm/s. Originality/value The novelty of this paper is the select of significant parameters on 3D-printed sand model properties. A mathematical model was built to analyze the effect of these parameters. The optimal process parameters for the best properties were got.

2019 ◽  
Vol 26 (2) ◽  
pp. 309-318
Author(s):  
Zhi Guo ◽  
Zhongde Shan ◽  
Feng Liu ◽  
Dong Du ◽  
Mengmeng Zhao

Purpose In this paper, the effects of the adhesive and curing agent contents on the tensile strength, bending strength, gas evolution and gas permeability of three-dimensional printed sand molds are studied. A strength model of the three-dimensional printed sand molds is proposed. The multi-material composite sand mold forming test is carried out. In addition, the mesostructure of the sand mold is studied. Design/methodology/approach The performances of three-dimensional printed sand mold such as tensile strength, bending strength, gas evolution and gas permeability are studied using the standard test methods. The mesostructure of the sand mold is studied by digital core technology. Findings A sand mold strength model based on the resin adhesive content, curing agent content and sand mold compactness are obtained. Two types of multi-material composite three-dimensional printed sand molds are proposed. An increase in the curing agent content in the sand mold widens the mesoscopic characteristic size distribution of the sand mold, and large-sized mesostructures appear, resulting in a decrease in the sand mold bearing capacity. Practical implications Process parameters that affect the performance of three-dimensional printed sand mold are revealed. The sand mold bearing curve provides a reference for the ultimate design of three-dimensional printed sand mold. Originality/value The paper deals with experimental work on the performance and mesostructure of multi-material composite three-dimensional printed sand mold with different contents of adhesive and curing agent. That gives a perspective on future designs of sand mold based on these principles.


2019 ◽  
Vol 16 (4) ◽  
pp. 550-559 ◽  
Author(s):  
Abhinav Chadha ◽  
Mir Irfan Ul Haq ◽  
Ankush Raina ◽  
Rana Ratna Singh ◽  
Narendra Babu Penumarti ◽  
...  

Purpose This paper aims to explore the effect of bed temperature, primary layer thickness and infill pattern (rectilinear, honeycomb, triangular) on the mechanical properties of tensile strength and bending strength of 3D printed parts. Design/methodology/approach Samples in accordance to various ASTM standards were printed by fused deposition modelling (FDM) method by varying the various input paramaters such as bed temperature, primary layer thickness and infill pattern (rectilinear, honeycomb, triangular). Tensile and bending testing was carried out on the printed parts, and post to the testing, fractography has been carried out using scanning electron microscope. Findings With increase in bed temperature tensile strength and flexural strength first increases then decreases. With the increase in primary layer thickness, tensile strength and flexural strength increase. With regard to infill patterns, triangular and honeycomb exhibit better tensile strength and better flexural strength. Practical implications The 3D printing is increasingly becoming important for manufacturing of engineering parts, determining the process parameters which could result in better mechanical and physical properties shall certainly help designers and manufacturers globally. Originality/value This work elucidates the effect of various process parameters of FDM on tensile and flexural properties of the samples.


2020 ◽  
Vol 26 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Harshit K. Dave ◽  
Ashish R. Prajapati ◽  
Shilpesh R. Rajpurohit ◽  
Naushil H. Patadiya ◽  
Harit K. Raval

Purpose Fused deposition modeling (FDM) is being increasingly used in automotive and aerospace industries because of its ability to produce specimens having difficult geometrical shape. However, owing to lack of critical information regarding the reliability and mechanical properties of FDM-printed parts at various designs, the use of 3D printed parts in these industries is limited. Therefore, the purpose of this paper is to investigate the impact of process parameters of FDM on the tensile strength of open-hole specimen printed using in-house-fabricated polylactic acid (PLA). Design/methodology/approach In the present study, three process parameters, namely, raster angle, layer thickness and raster width, are selected for investigation of tensile strength. To produce the tensile specimens in the FDM machine, the PLA filament is used which is fabricated from PLA granules using a single-screw extruder. Further, the experimental values are measured and critically analysed. Failure modes under tests are studied using scanning electron microscopy (SEM). Findings Results indicate that the raster angle has a significant effect on the tensile strength of open-hole tensile specimen. Specimens built with 0° raster angle, 200-µm layer thickness and 500-µm raster width obtained maximum tensile strength. Originality/value In this work, a new concept of testing a plate that has a rectangular shape and a circular hole at the centre is tested. Open-hole tensile test standard ASTM D5766 has been implemented for the first time for the FDM process.


Author(s):  
Varun Sharma ◽  
Khaja Moinuddin Shaik ◽  
Archita Choudhury ◽  
Pramod Kumar ◽  
Prateek Kala ◽  
...  

The present research paper attempts to study the effect of different process parameters on the dissolution rate during 3D printed tablets. Three-dimensional printing has the potential of serving tailored made tablets to cater personalized drug delivery systems. Fluorescein loaded PVA filaments through impregnation route was used to fabricate tablets based on Taguchi based design of experimentation using Fused Deposition Modelling (FDM). The effect of print speed, infill percentage and layer thickness were analyzed to study the effect on rate of dissolution. Infill percentage followed by print speed were found to be critical parameters affecting dissolution rate. The data analysis provided an insight into the study of interaction among different 3D printing parameters to develop an empirical relation for percentage release of the drug in human body.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sapam Ningthemba Singh ◽  
Vavilada Satya Swamy Venkatesh ◽  
Ashish Bhalchandra Deoghare

Purpose During the COVID-19 pandemic, the three-dimensional (3D) printing community is actively participating to address the supply chain gap of essential medical supplies such as face masks, face shields, door adapters, test swabs and ventilator valves. This paper aims to present a comprehensive study on the role of 3D printing during the coronavirus (COVID-19) pandemic, its safety and its challenges. Design/methodology/approach This review paper focuses on the applications of 3D printing in the fight against COVID-19 along with the safety and challenges associated with 3D printing to fight COVID-19. The literature presented in this paper is collected from the journal indexing engines including Scopus, Google Scholar, ResearchGate, PubMed, Web of Science, etc. The main keywords used for searches were 3D printing COVID-19, Safety of 3D printed parts, Sustainability of 3D printing, etc. Further possible iterations of the keywords were used to collect the literature. Findings The applications of 3D printing in the fight against COVID-19 are 3D printed face masks, shields, ventilator valves, test swabs, drug deliveries and hands-free door adapters. As most of these measures are implemented hastily, the safety and reliability of these parts often lacked approval. The safety concerns include the safety of the printed parts, operators and secondary personnel such as the workers in material preparation and transportation. The future challenges include sustainability of the process, long term supply chain, intellectual property and royalty-free models, etc. Originality/value This paper presents a comprehensive study on the applications of 3D printing in the fight against COVID-19 with emphasis on the safety and challenges in it.


2018 ◽  
Vol 24 (8) ◽  
pp. 1365-1379 ◽  
Author(s):  
Zuhao Li ◽  
Chenyu Wang ◽  
Chen Li ◽  
Zhonghan Wang ◽  
Fan Yang ◽  
...  

PurposeThis paper aims to review the latest applications in terms of three-dimensional printed (3DP) metal implants in orthopedics, and, importantly, the design of 3DP metal implants through a series of cases operated at The Second Hospital of Jilin University were presented.Design/methodology/approachThis paper is available to practitioners who are use 3DP implants in orthopedics. This review began with the deficiency of traditional prostheses and basic concepts of 3DP implants. Then, representative 3DP clinical cases were summarized and compared, and the experiences using customized prostheses and directions for future potential development are also shown.FindingsThe results obtained from the follow-up of clinical applications of 3DP implants show that the 3D designed and printed metal implants could exhibit good bone defect matching, quick and safe joint functional rehabilitation as well as saving time in surgery, which achieved high patient satisfaction collectively.Originality/valueSingle center experiences of 3DP metal implants design were shared and the detailed technical points between various regions were compared and analyzed. In conclusion, the 3DP technology is infusive and will present huge potential to reform future orthopedic practice.


2015 ◽  
Vol 21 (6) ◽  
pp. 630-648 ◽  
Author(s):  
Sunil Kumar Tiwari ◽  
Sarang Pande ◽  
Sanat Agrawal ◽  
Santosh M. Bobade

Purpose – The purpose of this paper is to propose and evaluate the selection of materials for the selective laser sintering (SLS) process, which is used for low-volume production in the engineering (e.g. light weight machines, architectural modelling, high performance application, manufacturing of fuel cell, etc.), medical and many others (e.g. art and hobbies, etc.) with a keen focus on meeting customer requirements. Design/methodology/approach – The work starts with understanding the optimal process parameters, an appropriate consolidation mechanism to control microstructure, and selection of appropriate materials satisfying the property requirement for specific application area that leads to optimization of materials. Findings – Fabricating the parts using optimal process parameters, appropriate consolidation mechanism and selecting the appropriate material considering the property requirement of applications can improve part characteristics, increase acceptability, sustainability, life cycle and reliability of the SLS-fabricated parts. Originality/value – The newly proposed material selection system based on properties requirement of applications has been proven, especially in cases where non-experts or student need to select SLS process materials according to the property requirement of applications. The selection of materials based on property requirement of application may be used by practitioners from not only the engineering field, medical field and many others like art and hobbies but also academics who wish to select materials of SLS process for different applications.


2019 ◽  
Vol 25 (1) ◽  
pp. 162-175 ◽  
Author(s):  
Abdullah AlFaify ◽  
James Hughes ◽  
Keith Ridgway

Purpose The pulsed-laser powder bed fusion (PBF) process is an additive manufacturing technology that uses a laser with pulsed beam to melt metal powder. In this case, stainless steel SS316L alloy is used to produce complex components. To produce components with acceptable mechanical performance requires a comprehensive understanding of process parameters and their interactions. This study aims to understand the influence of process parameters on reducing porosity and increasing part density. Design/methodology/approach The response surface method (RSM) is used to investigate the impact of changing critical parameters on the density of parts manufactured. Parameters considered include: point distance, exposure time, hatching distance and layer thickness. Part density was used to identify the most statistically significant parameters, before each parameter was analysed individually. Findings A clear correlation between the number and shape of pores and the process parameters was identified. Point distance, exposure time and layer thickness were found to significantly affect part density. The interaction between these parameters also critically affected the development of porosity. Finally, a regression model was developed and verified experimentally and used to accurately predict part density. Research limitations/implications The study considered a range of selected parameters relevant to the SS316L alloy. These parameters need to be modified for other alloys according to their physical properties. Originality/value This study is believed to be the first systematic attempt to use RSM for the design of experiments (DOE) to investigate the effect of process parameters of the pulsed-laser PBF process on the density of the SS316L alloy components.


2021 ◽  
Vol 27 (11) ◽  
pp. 24-36
Author(s):  
Susan Erica Nace ◽  
John Tiernan ◽  
Donal Holland ◽  
Aisling Ni Annaidh

Purpose Most support surfaces in comfort applications and sporting equipment are made from pressure-relieving foam such as viscoelastic polyurethane. However, for some users, foam is not the best material as it acts as a thermal insulator and it may not offer adequate postural support. The additive manufacturing of such surfaces and equipment may alleviate these issues, but material and design investigation is needed to optimize the printing parameters for use in pressure relief applications. This study aims to assess the ability of an additive manufactured flexible polymer to perform similarly to a viscoelastic foam for use in comfort applications. Design/methodology/approach Three-dimensional (3D) printed samples of thermoplastic polyurethane (TPU) are tested in uniaxial compression with four different infill patterns and varying infill percentage. The behaviours of the samples are compared to a viscoelastic polyurethane foam used in various comfort applications. Findings Results indicate that TPU experiences an increase in strength with an increasing infill percentage. Findings from the study suggest that infill pattern impacts the compressive response of 3D printed material, with two-dimensional patterns inducing an elasto-plastic buckling of the cell walls in TPU depending on infill percentage. Such buckling may not be a beneficial property for comfort applications. Based on the results, the authors suggest printing from TPU with a low-density 3D infill, such as 5% gyroid. Originality/value Several common infill patterns are characterised in compression in this work, suggesting the importance of infill choices when 3D printing end-use products and design for manufacturing.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aitor Tejo-Otero ◽  
Arthur Colly ◽  
Edwin-Joffrey Courtial ◽  
Felip Fenollosa-Artés ◽  
Irene Buj-Corral ◽  
...  

Purpose The purpose of this study is to use the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) additive manufacturing (AM) technique for manufacturing a liver phantom which can mimic the corresponding soft living tissue. One of the possible applications is surgical planning. Design/methodology/approach A thermo-reversible Pluronic® F-127-based support bath is used for the FRESH technique. To verify how three-dimensional (3D)-printed new materials can mimic liver tissue, dynamic mechanical analysis and oscillation shear rheometry tests are carried out to identify mechanical characteristics of different 3D printed silicone samples. Additionally, the differential scanning calorimetry was done on the silicone samples. Then, a validation of a 3D printed silicone liver phantom is performed with a 3D scanner. Finally, the surface topography of the 3D printed liver phantom was fulfiled and microscopy analysis of its surface. Findings Silicone samples were able to mimic the liver, therefore obtaining the first soft phantom of the liver using the FRESH technique. Practical implications Because of the use of soft silicones, surgeons could practice over these improved phantoms which have an unprecedented degree of living tissue mimicking, enhancing their rehearsal experience before surgery. Social implications An improvement in surgeons surgery skills would lead to a bettering in the patient outcome. Originality/value The first research study was carried out to mimic soft tissue and apply it to the 3D printing of organ phantoms using AM FRESH technique.


Sign in / Sign up

Export Citation Format

Share Document