A bandwidth enhancement and size reduction of monopole microstrip antenna for ultra wideband application

2018 ◽  
Vol 15 (3) ◽  
pp. 330-335
Author(s):  
Saadi Djidel ◽  
Mohamed Bouamar ◽  
Djamel Khedrouche

PurposeModern wireless communication application requires an antenna system to meet the requirements of miniaturization and wideband characteristic. In recent years, several antenna designs, that meet these requirements, have been proposed in the literature. In this context, the purpose of this paper is to design a new microstrip monopole antenna with a bandwidth enhancement and size reduction for ultra wideband application.Design/methodology/approachThe patch, of leaf of a plant shape, the feed line and the ground plane are printed on the inexpensive FR4 substrate material with permittivity 4.4 and loss tangent 0.02. To obtain optimal dimensions, a parametric study is conducted through numerical computations by using electromagnetic simulators HFSS and CST. A prototype of the optimized antenna is fabricated and subjected to a series of simulations and measurements.FindingsThe measurement results show a −10 dB impedance bandwidth of 6.7 GHz (3.5 GHz-10.2 GHz) which can cover the whole bandwidth requirements of an ultra wideband application. The designed antenna exhibits nearly symmetric and omnidirectional radiations patterns over the operating band, which is a sought-after behavior in microstrip patch antennas and has overall size of 35 × 31 mm2.Originality/valueThe proposed microstrip monopole antenna is very useful for modern wireless communications systems because of its compact size, its capability of covering the whole ultra wideband frequency band and its good radiation characteristics.

2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


2019 ◽  
Vol 12 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Liping Han ◽  
Jing Chen ◽  
Wenmei Zhang

AbstractA compact ultra-wideband (UWB) monopole antenna with reconfigurable band-notch characteristics is demonstrated in this paper. It is comprised of a modified rectangular patch and a defected ground plane. The band-notch property in the WiMAX and WLAN bands is achieved by etching an open-ended slot on the radiating patch and an inverted U-shaped slot on the ground plane, respectively. To obtain the reconfigurable band-notch performance, two PIN diodes are inserted in the slots, and then the notch-band can be switched by changing the states of the PIN diodes. The antenna has a compact size of 0.47 λ1 × 0.27 λ1. The simulated and measured results indicate that the antenna can operate at a UWB mode, two single band-notch modes, and a dual band-notch mode. Moreover, stable radiation patterns are obtained.


2015 ◽  
Vol 8 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Kamalaveni Ayyadurai ◽  
Ganesh Madhan Muthu

This paper proposed a compact planar monopole antenna operating at 5 GHz (5.180–5.825 GHz) industrial, scientific and medical (ISM) radio band. The antenna constructed with 20 mm × 12 mm radiating element and 25 mm square of the ground plane in FR4 substrate provided −10 dB bandwidth of 1 GHz (5.4–6.4 GHz). To improve the bandwidth, parasitic elements are added with the monopole antenna. A capacitive feed is also incorporated in the design. It observed that the proposed antenna with parasitic elements provides a larger impedance bandwidth of about 3 GHz (5.1–8.1 GHz), which is three-fold improvements over the one without parasitic patches. The prototype of the antenna that operates at 5.8 GHz frequency range is fabricated and characterized using a near-field measurement system. A good agreement is found between the simulation and measured results.


2020 ◽  
Vol 70 (2) ◽  
pp. 175-182
Author(s):  
Prithish Chand ◽  
Amar Dattatray Chaudhari ◽  
Rahul Keley ◽  
Kamala Prasan Ray

In this paper, a simple, low profile compact printed monopole antenna has been proposed for satellite based automatic identification system (SB-AIS). The design consists of a printed monopole, which has been meandered to achieve optimum size reduction. The detailed investigation in terms of bending of the arms of monopole, width of the patch and dimensions of the ground plane on the resonance frequency and input impedance is presented. The antenna is matched to a typical 50 Ω coaxial line without any requirement of external matching structures. The prototype of the antenna is fabricated and tested at an operating frequency of 161 MHz for SB-AIS, with compact size of 44.5 . 17 cm2. The measured results show that the antenna has a bandwidth of 15 MHz (9.3 per cent), gain of 1.87 dBi and beam-width of 82° in the elevation and omnidirectional in azimuthal plane. The size reduction is 53.8 per cent as compared to a linear printed monopole antenna.


2018 ◽  
Vol 7 (5) ◽  
pp. 87-93 ◽  
Author(s):  
D. Kahina ◽  
C. Mouloud ◽  
D. Mokrane ◽  
M. Faiza ◽  
A. Rabia

This paper proposes a novel small asymmetric coplanar strip (ACS) fed tri-band monopole antenna for WLAN and WiMAX applications. To tune and create multiple resonant frequencies, the exciting strip of monopole antenna is connected to two different arms which are a J-shaped directed toward the asymmetric ground plane and an open stub. The proposed monopole antenna with a total size of 14.6 x17.5 mm2 is fabricated and tested. The measured results indicate that the antenna has impedance bandwidths for 10-dB return loss reach about 500 MHz (2.01-2.52 GHz), 230 MHz (3.48-3.71 GHz) and 1.2GHz (5.59-6.72 GHz) which cover widely the 2.4/5.8 GHz WLAN bands and the 3.5GHz WiMAX band. The simulated radiation patterns of the proposed antenna at the three resonant frequencies have a dipole-like radiation pattern in both E-and H-Planes. The compact size, the simple structure and good radiation performances of the proposed antenna makes it well-suited forthe intended applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
A. Mchbal ◽  
N. Amar Touhami ◽  
H. Elftouh ◽  
A. Dkiouak

A compact ultra-wideband (UWB) multiple input-multiple output (MIMO) antenna with high isolation is designed for UWB applications. The proposed MIMO antenna consists of two identical monopole antenna elements. To enhance the impedance matching, three slots are formed on the ground plane. The arc structure as well as the semicircle with an open-end slot is employed on the radiating elements the fact which helps to extend the impedance bandwidth of the monopole antenna from 3.1 up to 10.6 GHz, which corresponds to the UWB band. A ground branch decoupling structure is introduced between the two elements to reduce the mutual coupling. Simulation and measurement results show a bandwidth range from 3.1 to 11.12 GHz with |S11_|<−15 dB, |S21_|<−20 dB, and ECC < 0.002.


2021 ◽  
Author(s):  
BUDHADEB MAITY ◽  
SISIR KUMAR NAYAK

Abstract This article presents a structure of coplanar waveguide (CPW)-fed star-shaped monopole antenna (SSMA) with a pair of quarter-circular-slit (QCS) and partly-hexagonal-ring-slit (PHRS) defected ground structure. By inserting a pair of QCS and PHRS on the rectangular ground plane, an excellent impedance bandwidth is achieved i.e., 139 % (from 2.2--12.21 GHz). The dimension of the SSMA is about 0.286λ l ×0.216λ l mm 2 , where λ l is the wavelength in free space at the lowest operating frequency i.e, 2.2 GHz. The transmission line model (TLM) of the SSMA is presented and it shows the antenna behavior based on the effect of each element. It is observed that the characteristics of the TLM model are close to the simulation result using the CST simulator. From the results, it is observed that the proposed ultra-wideband (UWB) antenna close to omnidirectional radiation patterns and suitable for UWB Applications.


2018 ◽  
Vol 10 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Dalia M. Elsheakh ◽  
Esmat A. Abdallah

This paper presents a procedure to model an ultra wide-bandwidth (UWB) microstrip monopole antenna. The proposed antenna is composed of three different lengths of semi-circular shapes connected with circular disk and half circular modified ground plane. The proposed antenna has a size of 50 × 50 mm2on a low-cost FR4 substrate. The antenna demonstrates impedance bandwidth of −10 dB extended from 1.5 to 11 GHz with discontinuous bandwidth at different interior operating bands. Two pairs of split ring resonator as metamaterial structure cells are inserted closely located from feeding transmission line of the antenna to achieve good impedance matching over the entire band of operation and improve the antenna performance. The fundamental parameters of the antenna including reflection coefficient, gain, radiation pattern and group delay are obtained and they meet the acceptable UWB antenna standard. High-frequency structure simulator ver. 14 is used as full-wave electromagnetic solver then the prototypes are fabricated and measured. Results show that the antenna is very suitable for the applications in UWB as well as wireless communication systems.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Mohammad Jakir Hossain ◽  
Mohammad Rashed Iqbal Faruque ◽  
Md. Moinul Islam ◽  
Mohammad Tariqul Islam ◽  
Md. Atiqur Rahman

AbstractIn this paper, a novel bird face microstrip printed monopole ultra-wideband (UWB) antenna is investigated. The proposed compact antenna consists of a ring-shaped with additional slot and slotted ground plane on FR4 material. The overall electrical dimension of the proposed antenna is 0.25 λ×0.36 λ×0.016 λ and is energized by microstrip feed line. The Computer Simulation Technology (CST) and the High Frequency Structural Simulator (HFSS) is applied in this analysis. The impedance bandwidth of the monopole antenna cover 3.1–12.3 GHz (9.2 GHz, BW) frequency range. The messurement displayed that the designed antenna achieved excellent gain and stable omnidirectional radiation patterns within the UWB. The maximum gain of 6.8 dBi and omnidirectional radiation pattern makes the proposed antenna that is suitable for UWB systems.


Sign in / Sign up

Export Citation Format

Share Document