Investigation of the stability of AC repulsive-force levitation systems for low-speed maglev

1992 ◽  
Vol 28 (5) ◽  
pp. 3315-3317 ◽  
Author(s):  
J.L. He ◽  
Z. Wang ◽  
D.M. Rote ◽  
S. Winkelman
Author(s):  
J. Sans ◽  
M. Resmini ◽  
J.-F. Brouckaert ◽  
S. Hiernaux

Solidity in compressors is defined as the ratio of the aerodynamic chord over the peripheral distance between two adjacent blades, the pitch. This parameter is simply the inverse of the pitch-to-chord ratio generally used in turbines. Solidity must be selected at the earliest design phase, i.e. at the level of the meridional design and represents a crucial step in the whole design process. Most of the existing studies on this topic rely on low-speed compressor cascade correlations from Carter or Lieblein. The aim of this work is to update those correlations for state-of-the-art controlled diffusion blades, and extend their application to high Mach number flow regimes more typical of modern compressors. Another objective is also to improve the physical understanding of the solidity effect on compressor performance and stability. A numerical investigation has been performed using the commercial software FINE/Turbo. Two different blade profiles were selected and investigated in the compressible flow regime as an extension to the low-speed data on which the correlations are based. The first cascade uses a standard double circular arc profile, extensively referenced in the literature, while the second configuration uses a state-of-the-art CDB, representative of low pressure compressor stator mid-span profile. Both profiles have been designed with the same inlet and outlet metal angles and the same maximum thickness but the camber and thickness distributions, the stagger angle and the leading edge geometry of the CDB have been optimized. The determination of minimum loss, optimum incidence and deviation is addressed and compared with existing correlations for both configurations and various Mach numbers that have been selected in order to match typical booster stall and choke operating conditions. The emphasis is set on the minimum loss performance at mid-span. The impact of the solidity on the operating range and the stability of the cascade are also studied.


Author(s):  
Naser Esmaeili ◽  
Reza Kazemi ◽  
S Hamed Tabatabaei Oreh

Today, use of articulated long vehicles is surging. The advantages of using large articulated vehicles are that fewer drivers are used and fuel consumption decreases significantly. The major problem of these vehicles is inappropriate lateral performance at high speed. The articulated long vehicle discussed in this article consists of tractor and two semi-trailer units that widely used to carry goods. The main purpose of this article is to design an adaptive sliding mode controller that is resistant to changing the load of trailers and measuring the noise of the sensors. Control variables are considered as yaw rate and lateral velocity of tractor and also first and second articulation angles. These four variables are regulated by steering the axles of the articulated vehicle. In this article after developing and verifying the dynamic model, a new adaptive sliding mode controller is designed on the basis of a nonlinear model. This new adaptive sliding mode controller steers the axles of the tractor and trailers through estimation of mass and moment of inertia of the trailers to maintain the stability of the vehicle. An articulated vehicle has been exposed to a lane change maneuver based on the trailer load in three different modes (low, medium and high load) and on a dry and wet road. Simulation results demonstrate the efficiency of this controller to maintain the stability of this articulated vehicle in a low-speed steep steer and high-speed lane change maneuvers. Finally, the robustness of this controller has been shown in the presence of measurement noise of the sensors. In fact, the main innovation of this article is in the designing of an adaptive sliding mode controller, which by changing the load of the trailers, in high-speed and low-speed maneuvers and in dry and wet roads, has the best performance compared to conventional sliding mode and linear controllers.


Author(s):  
Baofeng Tu ◽  
Xinyu Zhang ◽  
Liang Li ◽  
Jun Hu

The compressor is a critical component that determines the aerodynamic stability of an aero-engine. Total pressure inlet distortion decreases the thrust and shrinks the stability margin, thus inducing severe performance degradation or even flameout. Generally, tip air injection is used to reduce the adverse influence of total pressure inlet distortion on the aerodynamic stability. In the present work, an experimental investigation on the effects of tip air injection on the stability of a two-stage low-speed axial compressor with total pressure inlet distortion was carried out. A flat baffle generated the total pressure distortion at the inlet of the compressor. The stall margin of the compressor was reduced significantly by the total pressure distortion. When the dimensionless insertion depth of the flat baffle was 0.45, the stall margin decreased to 11.4%. Under the total pressure inlet distortion, tip air injection effectively improved the distortion resistance capability of the compressor. The circumferential layout of the nozzle played a critical role in the stability expansion effect of tip air injection under the inlet flow condition of the total pressure distortion. The modal wave disturbance was likely to occur in the distortion-affected region (the low-pressure region and the mixing region). Tip air injection did not inhibit the generation of the modal wave but restrained the development of the modal wave into the stall cell. It improved the low-speed compressor’s tolerance to the modal wave and allowed a higher amplitude modal wave to occur.


1998 ◽  
Vol 120 (3) ◽  
pp. 393-401 ◽  
Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms in a low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short length-scale disturbance known as a “spike,” and the second with a longer length-scale disturbance known as a “modal oscillation.” In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented that relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: Long length-scale disturbances are related to a two-dimensional instability of the whole compression system, while short length-scale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed that explains the type of stall inception pattern observed in a particular compressor. Measurements from a single-stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a ‘spike’, and the second with a longer lengthscale disturbance known as a ‘modal oscillation’. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiangsheng Liu ◽  
Lin Ren ◽  
Yuanyuan Yang ◽  
Jun He ◽  
Zhengxin Zhou

In terms of the instability of the full-order observer for the induction motor in the low-speed regenerative mode, the low-speed unstable region which leads to the extension of the commissioning cycle cannot be eliminated by the traditional adaptive law which aims at good system performance. It is proposed that the feedback gain matrix can control both the unstable region and the system performance both. To make a trade-off between the stability and performance by designing the feedback gain matrix is still an open problem. To solve this problem, first we analyze the cause of instability and derive constraints to ensure system stability by establishing a transfer function of the adaptive observing system for the speed. Then, with the derived constraints as the design criteria for the feedback gain matrix, a control strategy combining the weighted adaptive law with the improved feedback gain matrix is proposed to improve the stability at low speed. Finally, by comparing the traditional control strategy with the proposed control strategy through simulations and experiments, we show that the proposed control strategy achieves better performance with higher stability.


1953 ◽  
Vol 57 (510) ◽  
pp. 419-420
Author(s):  
P. T. Fink

Aerodynamic theory may be used with reasonable confidence to estimate the low-speed value of the stability derivative Ip for wings of most plan forms under quasi-steady conditions so long as viscous effects are unimportant. Wind tunnels tests are made to cover other cases such as the partially stalled swept wing, but the writer has heard of a difficulty encountered by a firm when using the free-rolling method. A variant of that technique in which this difficulty is avoided and which has been used at Imperial College for some years may be of interest.


2006 ◽  
Vol 43 (12) ◽  
pp. 1317-1328 ◽  
Author(s):  
Serkan Özgen ◽  
Zafer Dursunkaya ◽  
Ali Aslan Ebrinç

2013 ◽  
Vol 275-277 ◽  
pp. 446-450
Author(s):  
Ning Cao

Preconditioning technology is an effective method to simulate low Mach number flows, but the stability of the result is poor relatively. With the traditional preconditioning method on Roe’s scheme, the dissipation is too large in the boundary layer and extremely low-speed zone, and sometimes the result is unreasonable. Numerical experiments show the numerical dissipation of the scheme has a notable effect on low-speed flow numerical simulation with preconditioning method. A low-diffusion preconditioning Roe scheme by using an adjustable parameter in preconditioning Roe scheme to control the numerical dissipation and the adjustable parameter value rules are proposed. The low-diffusion preconditioning Roe scheme reflects the real physical dissipation in the extremely low-speed zone. In the region similar to the inflow speed, low-diffusion preconditioning Roe scheme can ensure the stability of the flow field. Numerical results show the efficiency of the new scheme and the low Reynolds number steady solutions of viscous flow past a circular cylinder are satisfied.


Sign in / Sign up

Export Citation Format

Share Document