Characterizing leakage current in silicon nanowire-based field-effect transistors by applying pseudo-random sequences

Author(s):  
Tomi Roinila ◽  
Xiao Yu ◽  
Anran Gao ◽  
Tie Li ◽  
Jarmo Verho ◽  
...  
2014 ◽  
Vol 5 ◽  
pp. 964-972 ◽  
Author(s):  
Tomi Roinila ◽  
Xiao Yu ◽  
Jarmo Verho ◽  
Tie Li ◽  
Pasi Kallio ◽  
...  

Silicon nanowire-based field-effect transistors (SiNW FETs) have demonstrated the ability of ultrasensitive detection of a wide range of biological and chemical targets. The detection is based on the variation of the conductance of a nanowire channel, which is caused by the target substance. This is seen in the voltage–current behavior between the drain and source. Some current, known as leakage current, flows between the gate and drain, and affects the current between the drain and source. Studies have shown that leakage current is frequency dependent. Measurements of such frequency characteristics can provide valuable tools in validating the functionality of the used transistor. The measurements can also be an advantage in developing new detection technologies utilizing SiNW FETs. The frequency-domain responses can be measured by using a commercial sine-sweep-based network analyzer. However, because the analyzer takes a long time, it effectively prevents the development of most practical applications. Another problem with the method is that in order to produce sinusoids the signal generator has to cope with a large number of signal levels. This may become challenging in developing low-cost applications. This paper presents fast, cost-effective frequency-domain methods with which to obtain the responses within seconds. The inverse-repeat binary sequence (IRS) is applied and the admittance spectroscopy between the drain and source is computed through Fourier methods. The methods is verified by experimental measurements from an n-type SiNW FET.


2007 ◽  
Vol 90 (14) ◽  
pp. 142110 ◽  
Author(s):  
M. T. Björk ◽  
O. Hayden ◽  
H. Schmid ◽  
H. Riel ◽  
W. Riess

2016 ◽  
Vol 60 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Vivek Pachauri ◽  
Sven Ingebrandt

Biologically sensitive field-effect transistors (BioFETs) are one of the most abundant classes of electronic sensors for biomolecular detection. Most of the time these sensors are realized as classical ion-sensitive field-effect transistors (ISFETs) having non-metallized gate dielectrics facing an electrolyte solution. In ISFETs, a semiconductor material is used as the active transducer element covered by a gate dielectric layer which is electronically sensitive to the (bio-)chemical changes that occur on its surface. This review will provide a brief overview of the history of ISFET biosensors with general operation concepts and sensing mechanisms. We also discuss silicon nanowire-based ISFETs (SiNW FETs) as the modern nanoscale version of classical ISFETs, as well as strategies to functionalize them with biologically sensitive layers. We include in our discussion other ISFET types based on nanomaterials such as carbon nanotubes, metal oxides and so on. The latest examples of highly sensitive label-free detection of deoxyribonucleic acid (DNA) molecules using SiNW FETs and single-cell recordings for drug screening and other applications of ISFETs will be highlighted. Finally, we suggest new device platforms and newly developed, miniaturized read-out tools with multichannel potentiometric and impedimetric measurement capabilities for future biomedical applications.


2021 ◽  
Author(s):  
Yejin Yang ◽  
Juhee Jeon ◽  
Jaemin Son ◽  
Kyoungah Cho ◽  
Sangsig Kim

Abstract The processing of large amounts of data requires a high energy efficiency and fast processing time for high-performance computing systems. However, conventional von Neumann computing systems have performance limitations because of bottlenecks in data movement between separated processing and memory hierarchy, which causes latency and high power consumption. To overcome this hindrance, logic-in-memory (LIM) has been proposed that performs both data processing and memory operations. Here, we present a NAND and NOR LIM composed of silicon nanowidre feedback field-effect transistors, whose configuration resembles that of CMOS logic gate circuits. The LIM can perform memory operations to retain its output logic under zero-bias conditions as well as logic operations with a high processing speed of nanoseconds. The newly proposed dynamic voltage-transfer characteristics verify the operating principle of the LIM. This study demonstrates that the NAND and NOR LIM has promising potential to resolve power and processing speed issues.


Sign in / Sign up

Export Citation Format

Share Document