scholarly journals Creating Self-Aware Low-Voltage Electromagnetic Coils for Incipient Insulation Degradation Monitoring for Smart Manufacturing

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 69860-69868 ◽  
Author(s):  
Kai Wang ◽  
Haifeng Guo ◽  
Aidong Xu ◽  
Noel Jordan Jameson ◽  
Michael Pecht ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 473
Author(s):  
Haifeng Guo ◽  
Aidong Xu ◽  
Kai Wang ◽  
Yue Sun ◽  
Xiaojia Han ◽  
...  

Electromagnetic coils are one of the key components of many systems. Their insulation failure can have severe effects on the systems in which coils are used. This paper focuses on insulation degradation monitoring and remaining useful life (RUL) prediction of electromagnetic coils. First, insulation degradation characteristics are extracted from coil high-frequency electrical parameters. Second, health indicator is defined based on insulation degradation characteristics to indicate the health degree of coil insulation. Finally, an insulation degradation model is constructed, and coil insulation RUL prediction is performed by particle filtering. Thermal accelerated degradation experiments are performed to validate the RUL prediction performance. The proposed method presents opportunities for predictive maintenance of systems that incorporate coils.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3696
Author(s):  
Kai Wang ◽  
Haifeng Guo ◽  
Aidong Xu ◽  
Michael Pecht

Electromagnetic coils are a key component in a variety of systems and are widely used in many industries. Because their insulation usually fails suddenly and can have catastrophic effects, degradation monitoring of coil insulation systems plays a vital role in avoiding unexpected machine shutdown. The existing insulation degradation monitoring methods are based on assessing the change of coil high-frequency electrical parameter response, whereas the effects of the insulation failure mechanisms are not considered, which leads to inconsistency between experimental results. Therefore, this paper investigates degradation monitoring of coil insulation systems under thermal loading conditions from a creep point of view. Inter-turn insulation creep deformation is identified as a quantitative index to manifest insulation degradation changes at the micro level. A method is developed to map coil high-frequency electrical monitoring parameters to inter-turn insulation creep deformation in order to bridge the gap between the micro-level and macro-level changes during the incipient insulation degradation process. Thermally accelerated tests are performed to validate the developed method. The mapping method helps to determine the physical meaning of coil electrical monitoring parameters and presents opportunities for predictive maintenance of machines that incorporate electromagnetic coils.


Author(s):  
Marek Malecki ◽  
J. Victor Small ◽  
James Pawley

The relative roles of adhesion and locomotion in malignancy have yet to be clearly established. In a tumor, subpopulations of cells may be recognized according to their capacity to invade neighbouring tissue,or to enter the blood stream and metastasize. The mechanisms of adhesion and locomotion are themselves tightly linked to the cytoskeletal apparatus and cell surface topology, including expression of integrin receptors. In our studies on melanomas with Fluorescent Microscopy (FM) and Cell Sorter(FACS), we noticed that cells in cultures derived from metastases had more numerous actin bundles, then cells from primary foci. Following this track, we attempted to develop technology allowing to compare ultrastructure of these cells using correlative Transmission Electron Microscopy(TEM) and Low Voltage Scanning Electron Microscopy(LVSEM).


Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Author(s):  
T. Miyokawa ◽  
S. Norioka ◽  
S. Goto

Field emission SEMs (FE-SEMs) are becoming popular due to their high resolution needs. In the field of semiconductor product, it is demanded to use the low accelerating voltage FE-SEM to avoid the electron irradiation damage and the electron charging up on samples. However the accelerating voltage of usual SEM with FE-gun is limited until 1 kV, which is not enough small for the present demands, because the virtual source goes far from the tip in lower accelerating voltages. This virtual source position depends on the shape of the electrostatic lens. So, we investigated several types of electrostatic lenses to be applicable to the lower accelerating voltage. In the result, it is found a field emission gun with a conical anode is effectively applied for a wide range of low accelerating voltages.A field emission gun usually consists of a field emission tip (cold cathode) and the Butler type electrostatic lens.


Author(s):  
E. F. Lindsey ◽  
C. W. Price ◽  
E. L. Pierce ◽  
E. J. Hsieh

Columnar structures produced by DC magnetron sputtering can be altered by using RF biased sputtering or by exposing the film to nitrogen pulses during sputtering, and these techniques are being evaluated to refine the grain structure in sputtered beryllium films deposited on fused silica substrates. Beryllium is brittle, and fractures in sputtered beryllium films tend to be intergranular; therefore, a convenient technique to analyze grain structure in these films is to fracture the coated specimens and examine them in an SEM. However, fine structure in sputtered deposits is difficult to image in an SEM, and both the low density and the low secondary electron emission coefficient of beryllium seriously compound this problem. Secondary electron emission can be improved by coating beryllium with Au or Au-Pd, and coating also was required to overcome severe charging of the fused silica substrate even at low voltage. The coating structure can obliterate much of the fine structure in beryllium films, but reasonable results were obtained by using the high-resolution capability of an Hitachi S-800 SEM and either ion-beam coating with Au-Pd or carbon coating by thermal evaporation.


Sign in / Sign up

Export Citation Format

Share Document