scholarly journals Latest Research Trends in Gait Analysis Using Wearable Sensors and Machine Learning: A Systematic Review

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 167830-167864
Author(s):  
Abdul Saboor ◽  
Triin Kask ◽  
Alar Kuusik ◽  
Muhammad Mahtab Alam ◽  
Yannick Le Moullec ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2727
Author(s):  
Hari Prasanth ◽  
Miroslav Caban ◽  
Urs Keller ◽  
Grégoire Courtine ◽  
Auke Ijspeert ◽  
...  

Gait analysis has traditionally been carried out in a laboratory environment using expensive equipment, but, recently, reliable, affordable, and wearable sensors have enabled integration into clinical applications as well as use during activities of daily living. Real-time gait analysis is key to the development of gait rehabilitation techniques and assistive devices such as neuroprostheses. This article presents a systematic review of wearable sensors and techniques used in real-time gait analysis, and their application to pathological gait. From four major scientific databases, we identified 1262 articles of which 113 were analyzed in full-text. We found that heel strike and toe off are the most sought-after gait events. Inertial measurement units (IMU) are the most widely used wearable sensors and the shank and foot are the preferred placements. Insole pressure sensors are the most common sensors for ground-truth validation for IMU-based gait detection. Rule-based techniques relying on threshold or peak detection are the most widely used gait detection method. The heterogeneity of evaluation criteria prevented quantitative performance comparison of all methods. Although most studies predicted that the proposed methods would work on pathological gait, less than one third were validated on such data. Clinical applications of gait detection algorithms were considered, and we recommend a combination of IMU and rule-based methods as an optimal solution.


2022 ◽  
Vol 71 ◽  
pp. 103197
Author(s):  
Issam Boukhennoufa ◽  
Xiaojun Zhai ◽  
Victor Utti ◽  
Jo Jackson ◽  
Klaus D. McDonald-Maier

2020 ◽  
Author(s):  
Luca Parisi ◽  
Narrendar RaviChandran ◽  
Matteo Lanzillotta

<p><b>Background</b></p> <p>Knee osteoarthritis (OA) remains a leading aetiology of disability worldwide. Clinical assessment of such knee-related conditions has improved with recent advances in gait analysis. Despite being a gold standard method, gait data acquired by motion capture (mocap) technology are highly non-linear and dimensional, which make traditional gait analysis challenging. Thus, extrinsic algorithms need to be used to make sense of gait data. Supervised Machine Learning (ML)-based classifiers outperform conventional statistical methods in revealing intrinsic patterns that can discern gait abnormalities when using mocap data, making them a suitable tool for aiding diagnosis of knee OA.</p> <p><b>Research question</b></p> <p>Studies have demonstrated the accuracy of supervised ML-based classifiers in gait analysis. However, these techniques have not gained wide acceptance amongst biomechanists for two reasons: the reliability of such methods has not been assessed and there is no consensus on which classifier or group of classifiers to select. Specifically, it is not clear whether classifiers that leverage optimal separating hyperplanes (OSH) or artificial neural networks (ANN) are more accurate and reliable.</p> <p><b>Methods</b></p> <p>A systematic review and meta-analysis were conducted to assess the capability of such algorithms to predict pathological kinematic and kinetic gait patterns as indicators of knee OA. With 153 eligible studies, 6 studies met the inclusion criteria for a subsequent meta-analysis, accounting for <a>273 healthy subjects and 313 patients </a>with symptomatic knee OA. The classification performance of supervised ML classifiers (OSH- or ANN-based) used in these studies was quantitatively assessed and compared across four following performance metrics: classification accuracy on the test set (ACC), sensitivity (SN), specificity (SP), and area under the receiver operating characteristic curve (AUC). </p> <p><b>Results</b></p> <p>There was no statistically significant discrepancy in the ACC between OSH- and ANN-based classifiers when dealing with kinetic and kinematic data concurrently, as well as when considering only kinematic data. However, there was a statistically significant difference in their SN and SP, with the ANN-based classifiers having higher SN and SP than OSH-based algorithms. As only one of the eligible studies reported AUC, this metric could not be assessed statistically across studies.</p> <p><b>Significance</b></p> <p>This study supports the use of ANN-based algorithms for classifying knee OA-related gait patterns as having a higher sensitivity and specificity than OSH-based classifiers. Considering their higher reliability, leveraging supervised ANN-based methods can aid biomechanists to diagnose knee OA objectively.</p>


2020 ◽  
Author(s):  
Luca Parisi ◽  
Narrendar RaviChandran ◽  
Matteo Lanzillotta

<p><b>Background</b></p> <p>Knee osteoarthritis (OA) remains a leading aetiology of disability worldwide. Clinical assessment of such knee-related conditions has improved with recent advances in gait analysis. Despite being a gold standard method, gait data acquired by motion capture (mocap) technology are highly non-linear and dimensional, which make traditional gait analysis challenging. Thus, extrinsic algorithms need to be used to make sense of gait data. Supervised Machine Learning (ML)-based classifiers outperform conventional statistical methods in revealing intrinsic patterns that can discern gait abnormalities when using mocap data, making them a suitable tool for aiding diagnosis of knee OA.</p> <p><b>Research question</b></p> <p>Studies have demonstrated the accuracy of supervised ML-based classifiers in gait analysis. However, these techniques have not gained wide acceptance amongst biomechanists for two reasons: the reliability of such methods has not been assessed and there is no consensus on which classifier or group of classifiers to select. Specifically, it is not clear whether classifiers that leverage optimal separating hyperplanes (OSH) or artificial neural networks (ANN) are more accurate and reliable.</p> <p><b>Methods</b></p> <p>A systematic review and meta-analysis were conducted to assess the capability of such algorithms to predict pathological kinematic and kinetic gait patterns as indicators of knee OA. With 153 eligible studies, 6 studies met the inclusion criteria for a subsequent meta-analysis, accounting for <a>273 healthy subjects and 313 patients </a>with symptomatic knee OA. The classification performance of supervised ML classifiers (OSH- or ANN-based) used in these studies was quantitatively assessed and compared across four following performance metrics: classification accuracy on the test set (ACC), sensitivity (SN), specificity (SP), and area under the receiver operating characteristic curve (AUC). </p> <p><b>Results</b></p> <p>There was no statistically significant discrepancy in the ACC between OSH- and ANN-based classifiers when dealing with kinetic and kinematic data concurrently, as well as when considering only kinematic data. However, there was a statistically significant difference in their SN and SP, with the ANN-based classifiers having higher SN and SP than OSH-based algorithms. As only one of the eligible studies reported AUC, this metric could not be assessed statistically across studies.</p> <p><b>Significance</b></p> <p>This study supports the use of ANN-based algorithms for classifying knee OA-related gait patterns as having a higher sensitivity and specificity than OSH-based classifiers. Considering their higher reliability, leveraging supervised ANN-based methods can aid biomechanists to diagnose knee OA objectively.</p>


2016 ◽  
Vol 20 (6) ◽  
pp. 1521-1537 ◽  
Author(s):  
Shanshan Chen ◽  
John Lach ◽  
Benny Lo ◽  
Guang-Zhong Yang

2022 ◽  
Author(s):  
Aishwarya Balakrishnan ◽  
◽  
Jeevan Medikonda ◽  
Pramod Kesavan Namboothiri ◽  
Manikandan Natarajan ◽  
...  

2019 ◽  
Author(s):  
Sun Jae Moon ◽  
Jin Seub Hwang ◽  
Rajesh Kana ◽  
John Torous ◽  
Jung Won Kim

BACKGROUND Over the recent years, machine learning algorithms have been more widely and increasingly applied in biomedical fields. In particular, its application has been drawing more attention in the field of psychiatry, for instance, as diagnostic tests/tools for autism spectrum disorder. However, given its complexity and potential clinical implications, there is ongoing need for further research on its accuracy. OBJECTIVE The current study aims to summarize the evidence for the accuracy of use of machine learning algorithms in diagnosing autism spectrum disorder (ASD) through systematic review and meta-analysis. METHODS MEDLINE, Embase, CINAHL Complete (with OpenDissertations), PsyINFO and IEEE Xplore Digital Library databases were searched on November 28th, 2018. Studies, which used a machine learning algorithm partially or fully in classifying ASD from controls and provided accuracy measures, were included in our analysis. Bivariate random effects model was applied to the pooled data in meta-analysis. Subgroup analysis was used to investigate and resolve the source of heterogeneity between studies. True-positive, false-positive, false negative and true-negative values from individual studies were used to calculate the pooled sensitivity and specificity values, draw SROC curves, and obtain area under the curve (AUC) and partial AUC. RESULTS A total of 43 studies were included for the final analysis, of which meta-analysis was performed on 40 studies (53 samples with 12,128 participants). A structural MRI subgroup meta-analysis (12 samples with 1,776 participants) showed the sensitivity at 0.83 (95% CI-0.76 to 0.89), specificity at 0.84 (95% CI -0.74 to 0.91), and AUC/pAUC at 0.90/0.83. An fMRI/deep neural network (DNN) subgroup meta-analysis (five samples with 1,345 participants) showed the sensitivity at 0.69 (95% CI- 0.62 to 0.75), the specificity at 0.66 (95% CI -0.61 to 0.70), and AUC/pAUC at 0.71/0.67. CONCLUSIONS Machine learning algorithms that used structural MRI features in diagnosis of ASD were shown to have accuracy that is similar to currently used diagnostic tools.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1071
Author(s):  
Lucia Billeci ◽  
Asia Badolato ◽  
Lorenzo Bachi ◽  
Alessandro Tonacci

Alzheimer’s disease is notoriously the most common cause of dementia in the elderly, affecting an increasing number of people. Although widespread, its causes and progression modalities are complex and still not fully understood. Through neuroimaging techniques, such as diffusion Magnetic Resonance (MR), more sophisticated and specific studies of the disease can be performed, offering a valuable tool for both its diagnosis and early detection. However, processing large quantities of medical images is not an easy task, and researchers have turned their attention towards machine learning, a set of computer algorithms that automatically adapt their output towards the intended goal. In this paper, a systematic review of recent machine learning applications on diffusion tensor imaging studies of Alzheimer’s disease is presented, highlighting the fundamental aspects of each work and reporting their performance score. A few examined studies also include mild cognitive impairment in the classification problem, while others combine diffusion data with other sources, like structural magnetic resonance imaging (MRI) (multimodal analysis). The findings of the retrieved works suggest a promising role for machine learning in evaluating effective classification features, like fractional anisotropy, and in possibly performing on different image modalities with higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document