scholarly journals Dilution of Precision in Positioning Systems Using Both Angle of Arrival and Time of Arrival Measurements

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 192506-192516
Author(s):  
Binghao Li ◽  
Kai Zhao ◽  
Xuesong Shen

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4249 ◽  
Author(s):  
Thomas Wilding ◽  
Stefan Grebien ◽  
Ulrich Mühlmann ◽  
Klaus Witrisal

The accuracy of radio-based positioning systems will be limited by multipath interference in realistic application scenarios. This paper derives closed-form expressions for the Cramér–Rao lower bound (CRLB) on the achievable time-of-arrival (ToA) and angle-of-arrival (AoA) estimation-error variances, considering the presence of multipath radio channels, and extends these results to position estimation. The derivations are based on channel models comprising deterministic, specular multipath components as well as stochastic, diffuse/dense multipath. The derived CRLBs thus allow an evaluation of the influence of channel parameters, the geometric configuration of the environment, and system parameters such as signal bandwidth and array geometry. Our results quantify how the ToA and AoA accuracies decrease when the signal bandwidth is reduced, because more multipath will then interfere with the useful LoS component. Antenna arrays can (partly) compensate this performance loss, exploiting diversity among the multipath interference. For example, the AoA accuracy with a 16-element linear array at 1 MHz bandwidth is similar to a two-element array at 1 GHz , in the magnitude order of one degree. The ToA accuracy, on the other hand, still scales by a factor of 100 from the cm-regime to the m-regime because of the dominating influence of the signal bandwidth. The position error bound shows the relationship between the range and angle information under realistic indoor channel conditions and their different scaling behaviors as a function of the anchor–agent placement. Specular multipath components have a maximum detrimental influence near the walls. It is shown for an L-shaped room that a fairly even distribution of the position error bound can be achieved throughout the environment, using two anchors equipped with 2 × 2 -array antennas. The accuracy limit due to multipath increases from the 1–10-cm-range at 1 GHz bandwidth to the 0.5–1-m-range at 100 MHz .









2018 ◽  
Vol 14 (11) ◽  
pp. 155014771878689 ◽  
Author(s):  
Shenghong Li ◽  
Lingyun Lu ◽  
Mark Hedley ◽  
David Humphrey ◽  
Iain B Collings

A widely used scheme for target localization is to measure the time of arrival of a wireless signal emitted by a tag, which requires the clocks of the anchors (receivers at known locations) to be accurately synchronized. Conventional systems rely on transmissions from a timing reference node at a known location for clock synchronization and therefore are susceptible to reference node failure. In this article, we propose a novel localization scheme which jointly estimates anchor clock offsets and target positions. The system does not require timing reference nodes and is completely passive (non-intrusive). The positioning algorithm is formulated as a maximum likelihood estimation problem, which is solved efficiently using an iterative linear least square method. The Cramér–Rao lower bound of positioning error is also analyzed. It is shown that the performance of the proposed scheme improves with the number of targets in the system and approaches that of a system with perfectly synchronized anchors.



2011 ◽  
Vol 1 ◽  
pp. 173-177
Author(s):  
Szu Lin Su ◽  
Yi Wen Su ◽  
Ho Nien Shou ◽  
Chien Sheng Chen

When there is non-line-of-sight (NLOS) path between the mobile station (MS) and base stations (BSs), it is possible to integrate many kinds of measurements to achieve more accurate measurements of the MS location. This paper proposed hybrid methods that utilize time of arrival (TOA) at five BSs and angle of arrival (AOA) information at the serving BS to determine the MS location in NLOS environments. The methods mitigate the NLOS effect simply by the weighted sum of the intersections between five TOA circles and the AOA line without requiring priori knowledge of NLOS error statistics. Simulation results show that the proposed methods always give superior performance than Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP).



Author(s):  
Swetha Reddy ◽  
Isaac Cushman ◽  
Danda B. Rawat ◽  
Min Song

The popularity of cloud-assisted database-driven cognitive radio network (CRN) has increased significantly due to three main reasons; reduced sensing uncertainties (caused by the use of spectrum scanning and sensing techniques), FCC mandated use of a database for storing and utilizing idle channels, and leveraging cloud computing platform to process big data generated by wideband sensing and analyzing. In database-driven CRN, secondary users periodically query the database to find idle channels for opportunistic communications where secondary users use their geolocation (with the help of Global Positioning System - GPS) to find idle channels for given location and time. Use of GPS makes the overall CRN vulnerable where malicious users falsify their geolocations through GPS spoofing to find more channels. The other main drawback of GPS is estimation error while finding location of users and idle bands. Due to this there will be probability of misdetection and false alarm which will have its effect on overall performance and efficiency of the system. In this paper, the authors present a three-stage mechanism for detecting GPS spoofing attacks using angle of arrival, received signal strength and time of arrival. They also evaluate the probability of misdetection and probability of false alarm in this system while detecting location of secondary users. The authors evaluate the performance of the proposed approach using numerical results.



IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 60613-60621 ◽  
Author(s):  
Haiyun Xu ◽  
Yankui Zhang ◽  
Bin Ba ◽  
Daming Wang ◽  
Xiangzhi Li


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Shixun Wu ◽  
Shengjun Zhang ◽  
Kai Xu ◽  
Darong Huang

In this paper, a localization scenario that the home base station (BS) measures time of arrival (TOA) and angle of arrival (AOA) while the neighboring BSs only measure TOA is investigated. In order to reduce the effect of non-line of sight (NLOS) propagation, the probability weighting localization algorithm based on NLOS identification is proposed. The proposed algorithm divides these range and angle measurements into different combinations. For each combination, a statistic whose distribution is chi-square in LOS propagation is constructed, and the corresponding theoretic threshold is derived to identify each combination whether it is LOS or NLOS propagation. Further, if those combinations are decided as LOS propagation, the corresponding probabilities are derived to weigh the accepted combinations. Simulation results demonstrate that our proposed algorithm can provide better performance than conventional algorithms in different NLOS environments. In addition, computational complexity of our proposed algorithm is analyzed and compared.



Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1463 ◽  
Author(s):  
André G. Ferreira ◽  
Duarte Fernandes ◽  
André P. Catarino ◽  
Ana M. Rocha ◽  
João L. Monteiro

Combining different technologies is gaining significant popularity among researchers and industry for the development of indoor positioning systems (IPSs). These hybrid IPSs emerge as a robust solution for indoor localization as the drawbacks of each technology can be mitigated or even eliminated by using complementary technologies. However, fusing position estimates from different technologies is still very challenging and, therefore, a hot research topic. In this work, we pose fusing the ultrawideband (UWB) position estimates with the estimates provided by a pedestrian dead reckoning (PDR) by using a Kalman filter. To improve the IPS accuracy, a decision-making algorithm was developed that aims to assess the usability of UWB measurements based on the identification of non-line-of-sight (NLOS) conditions. Three different data fusion algorithms are tested, based on three different time-of-arrival positioning algorithms, and experimental results show a localization accuracy of below 1.5 m for a 99th percentile.



Sign in / Sign up

Export Citation Format

Share Document