scholarly journals A Low-Profile Wideband Monocone Antenna Using Bent Shorting Strips

2019 ◽  
Vol 9 (9) ◽  
pp. 1896 ◽  
Author(s):  
Kyo-Seung Keum ◽  
Young-Mi Park ◽  
Jae-Hoon Choi

A low-profile wideband monocone antenna with bent shorting strips, and parasitic and circular sleeves is proposed. By loading the bent shorting strips, parasitic sleeves, and circular sleeves, miniaturization of the antenna is achieved. Along with bent shorting strips from the monocone hat to the ground plane, parasitic sleeves, and circular sleeves are mounted to enhance the impedance bandwidth. From the experimental results, the –10 dB reflection coefficient bandwidth of the proposed antenna ranges from 810 MHz to 5340 MHz. In addition to the wide bandwidth characteristics, the proposed antenna has highly desirable omnidirectional radiation properties for wireless communication systems.

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2141
Author(s):  
Junghoon Cha ◽  
Choon-Seong Leem ◽  
Ikhwan Kim ◽  
Hakyoung Lee ◽  
Hojun Lee

In this study, we proposed an indoor broadband dual-polarized 2 × 2 MIMO (multiple-input and multiple-output) antenna having dimensions of 240 mm × 200 mm × 40 mm, for application in 5G wireless communication systems. The proposed antenna comprised two vertically polarized circular monopole antennas (CMAs), two horizontally polarized modified rectangular dipole antennas (MRDAs), and a ground plane. The distance between the two MRDAs (MRDA1 and MRDA2) was 70.5 mm and 109.5 mm in the horizontal (x-direction) and 109.5 mm vertical (y-direction) directions, respectively. Conversely, the distance between the two CMAs (CMA1 and CMA2) was 109.5 mm and 70.5 mm in the horizontal (x-direction) and vertical (y-direction) directions, respectively. While the CMAs achieved broadband characteristics owing to the optimal gap between the dielectric and the driven radiator using a parasitic element, the MRDAs achieved broadband owing to the optimal distance between the dipole antennas. The observations in this experiment confirmed that the proposed could operate in the 5G NR n46 (5.15–5.925 GHz), n47 (5.855–5.925 GHz), n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and the n79 (4.4–5 GHz) bands. Moreover, it exhibited a wide impedance bandwidth (dB magnitude of ) of 101% in the 2.3–7 GHz frequency range, high isolation (dB magnitude of ), low envelope coefficient correlation (ECC), gain of over 5 dB, and average radiation efficiency of 87.19%, which verified its suitability for application in sub-6 GHz 5G wireless communication systems.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4261 ◽  
Author(s):  
Md. Samsuzzaman ◽  
Mohammad Islam

A simple, compact sickle-shaped printed antenna with a slotted ground plane is designed and developed for broadband circularly polarized (CP) radiation. The sickle-shaped radiator with a tapered feed line and circular slotted square ground plane are utilized to realize the wideband CP radiation feature. With optimized dimensions of 0.29λ × 0.29λ × 0.012λ at 2.22 GHz frequency for the realized antenna parameters, the measured results display that the antenna has a 10 dB impedance bandwidth of 7.70 GHz (126.85%; 2.22–9.92 GHz) and a 3 dB axial ratio (AR) bandwidth of 2.64 GHz (73.33%; 2.28–4.92 GHz). The measurement agrees well with simulation, which proves an excellent circularly polarized property. For verification, the mechanism of band improvement and circular polarization are presented, and the parametric study is carried out. Since, the proposed antenna is a simple design structure with broad impedance and AR bandwidth, which is a desirable feature as a candidate for various wireless communication systems. Because of the easy printed structure and scaling the dimension with broadband CP characteristics, the realized antenna does incorporate in a number of CP wireless communication applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianhui Bao ◽  
Qiulin Huang ◽  
Xinhuai Wang ◽  
Xiaowei Shi

A novel compact triple-band slot antenna is proposed for WLAN/WiMAX applications. With the use of three L-shaped slots and an open-ended slot on the ground plane, three resonant modes centered at 2.4/3.5/5.8 GHz are excited. These modes cover the standards of 3.5 GHz WiMAX and 2.4/5.8 GHz WLAN, three useful frequency bands for present wireless communication systems. The proposed antenna fed by L-shaped microstrip line has a small overall dimension of16×30 mm2. The numerical and experimental results show that acceptable radiation characteristic is obtained over the operating bands.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 477
Author(s):  
Warsha Balani ◽  
Mrinal Sarvagya ◽  
Ajit Samasgikar ◽  
Tanweer Ali ◽  
Pradeep Kumar

In this article, a compact concentric structured monopole patch antenna for super wideband (SWB) application is proposed and investigated. The essential characteristics of the designed antenna are: (i) to attain super-wide bandwidth characteristics, the proposed antenna is emerged from a traditional circular monopole antenna and has obtained an impedance bandwidth of 38.9:1 (ii) another important characteristic of the presented antenna is its larger bandwidth dimension ratio (BDR) value of 6596 that is accomplished by augmenting the electrical length of the patch. The electrical dimension of the proposed antenna is 0.18λ×0.16λ (λ corresponds to the lower end operating frequency). The designed antenna achieves a frequency range from 1.22 to 47.5 GHz with a fractional bandwidth of 190% and exhibiting S11 < −10 dB in simulation. For validating the simulated outcomes, the antenna model is fabricated and measured. Good conformity is established between measured and simulated results. Measured frequency ranges from 1.25 to 40 GHz with a fractional bandwidth of 188%, BDR of 6523 and S11 < −10 dB. Even though the presented antenna operates properly over the frequency range from 1.22 to 47.5 GHz, the results of the experiment are measured till 40 GHz because of the high-frequency constraint of the existing Vector Network Analyzer (VNA). The designed SWB antenna has the benefit of good gain, concise dimension, and wide bandwidth above the formerly reported antenna structures. Simulated gain varies from 0.5 to 10.3 dBi and measured gain varies from 0.2 to 9.7 dBi. Frequency domain, as well as time-domain characterization, has been realized to guide the relevance of the proposed antenna in SWB wireless applications. Furthermore, an equivalent circuit model of the proposed antenna is developed, and the response of the circuit is obtained. The presented antenna can be employed in L, S, C, X, Ka, K, Ku, and Q band wireless communication systems.


2016 ◽  
Vol 9 (3) ◽  
pp. 621-627 ◽  
Author(s):  
Idris Messaoudene ◽  
Tayeb A. Denidni ◽  
Abdelmadjid Benghalia

In this paper, a microstrip-fed U-shaped dielectric resonator antenna (DRA) is simulated, designed, and fabricated. This antenna, in its simple configuration, operates from 5.45 to 10.8 GHz. To enhance its impedance bandwidth, the ground plane is first modified, which leads to an extended bandwidth from 4 to 10.8 GHz. Then by inserting a rectangular metallic patch inside the U-shaped DRA, the bandwidth is increased more to achieve an operating band from 2.65 to 10.9 GHz. To validate these results, an experimental antenna prototype is fabricated and measured. The obtained measurement results show that the proposed antenna can provide an ultra-wide bandwidth and a symmetric bidirectional radiation patterns. With these features, the proposed antenna is suitable for ultra-wideband applications.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 347 ◽  
Author(s):  
Ke Li ◽  
Tao Dong ◽  
Zhenghuan Xia

This paper presents a multiple-resonance technique that sought to achieve a wide bandwidth for printed wide-slot antennas with fork-shaped stubs. By properly appending an extra fork-shaped stub onto the main fork-shaped stub, the impedance bandwidth was able to be clearly broadened. To validate this technique, two designs where the extra stubs were added at different positions of the main stub were constructed. The measured impedance bandwidths of the proposed antennas reached 148.6% (0.9–6.1 GHz) for S11 < −10 dB, indicating a 17.9% wider bandwidth than that of the normal antenna (0.9–4.3 GHz). Moreover, a stable radiation pattern was observed within the operating frequency range. The proposed antennas were confirmed to be much-improved candidates for applications in various wireless communication systems.


2014 ◽  
Vol 7 (6) ◽  
pp. 721-726
Author(s):  
Abhishek Kandwal ◽  
Jai Verdhan Chauhan ◽  
Sunil Kumar Khah

Design analysis of multiband-coupled stacked sectoral antenna array with finite ground plane using high low dielectric constant substrates is proposed in this paper for modern communication systems and applied physics. Multiband planar antennas have been extensively developed due to demands for integration of wireless communication systems. In this paper, we present the design and development of a multiband microstrip antenna array with parasitic coupling and stacking using two different substrates. The stacked designed antenna resonates at three different frequencies: 3.8, 5.4, and 10 GHz; therefore, showing a multiband property with good radiation (far-field) characteristics. A significant comparison study is also presented considering different dielectric constant substrates. The proposed antenna is an attractive solution for different wireless communication systems such as mobile systems, satellite systems, etc.


In wireless communication systems, designing of antennae with required parameters is an challenging issue. So, The approach in this paper is to design a corporate fed 2 element antenna array is designed to operate at 2.4 GHz using an FR-4 substrate of height h=1.6mm. For wireless application all the antenna parameters are analysed for two element array antenna with element spacing λ, λ/2 and with miters. It is observed that bandwidth decreases by decreasing the element spacing. But by using miters for antenna with element spacing bandwidth and reflection coefficient are improved. All the antennae are fabricated and tested using VNA E5071C.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Ahmad Fauzi Bin Abas ◽  
Wonsuk Ko ◽  
Majeed A. Alkanhal ◽  
...  

Terahertz (THz) links will play a major role in high data rate communication over a distance of few meters. In order to achieve this task, antenna designs with high gain and wideband characteristics will spearhead these links. In this contribution, we present different antenna designs that offer characteristics better suited to THz communication over short distances. Firstly, a single-element antenna having a dipole and reflector is designed to operate at 300 GHz, which is considered as a sub-terahertz band. That antenna achieves a wide impedance bandwidth of 38.6% from 294 GHz to 410 GHz with a gain of 5.14 dBi. Secondly, two designs based on the same dipole structure but with added directors are introduced to increase the gain while maintaining almost the same bandwidth. The gains achieved are 8.01 dBi and 9.6 dBi, respectively. Finally, an array of 1×4 elements is used to achieve the highest possible gain of 13.6 dBi with good efficiency about 89% and with limited director elements for a planar compact structure to state-of-the-art literature. All the results achieved make the proposed designs viable candidates for high-speed and short-distance wireless communication systems.


Sign in / Sign up

Export Citation Format

Share Document