How self-locking reduces actuators torque in climbing snake robots

Author(s):  
F. Barazandeh ◽  
B. Bahr ◽  
A. Moradi
Keyword(s):  
2016 ◽  
Vol 21 (3) ◽  
pp. 282-294 ◽  
Author(s):  
Ehsan Rezapour ◽  
Kristin Y. Pettersen ◽  
Jan T. Gravdahl ◽  
Andreas Hofmann

Author(s):  
Pål Liljebäck ◽  
Kristin Y. Pettersen ◽  
Øyvind Stavdahl ◽  
Jan Tommy Gravdahl

Author(s):  
Mohammadali Javaheri Koopaee ◽  
Cid Gilani ◽  
Callum Scott ◽  
XiaoQi Chen

This chapter concerns modelling and control of snake robots. Specifically, the authors' main goal is introducing some of the fundamental design, modelling, and control approaches introduced for efficient snake robot locomotion in cluttered environments. This is a critical topic because, unlike locomotion in flat surfaces, where pre-specified gait equations can be employed, for locomotion in unstructured environment more sophisticated control approaches should be used to achieve intelligent and efficient mobility. To reach this goal, shape-based modelling approaches and a number of available control schemes for operation in unknown environments are presented, which hopefully motivates more scholars to start working on snake robots. Some ideas about future research plans are also proposed, which can be helpful for fabricating a snake robot equipped with the necessary features for operation in a real-world environment.


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Chaoquan Tang ◽  
Peng Li ◽  
Gongbo Zhou ◽  
Deyuan Meng ◽  
Xin Shu ◽  
...  

The narrow and redundant body of the snake robot makes it suitable for the inspection of complex bar structures, such as truss or tree structures. One of the key issues affecting the efficient motion of snake robots in complex bar structures is the development of mechanical models of snake robots on cylinders. In other words, the relationship between the payload and structural and performance parameters of the snake robot is still difficult to clarify. In this paper, the problem is approached with the Newton–Euler equations and the convex optimal method. Firstly, from the kinematic point of view, the optimal attitude of the snake robot wrapped around the cylinder is found. Next, the snake robot is modeled on the cylinder and transformed into a convex optimization problem. Then, the relationship between the payload of the snake robot on the cylinder and the geometric and attitude parameters of the body of snake robots is analyzed. Finally, the discussion for the optimal winding attitude and some advices for the design of the snake robot are proposed. This study is helpful toward the optimal design of snake robots, including geometry parameters and motor determination.


2019 ◽  
Vol 9 (23) ◽  
pp. 5104
Author(s):  
Yunhu Zhou ◽  
Yuanfei Zhang ◽  
Fenglei Ni ◽  
Hong Liu

Head control is important for snake robots to work in an unknown environment. However, the existing methods of head control have certain application limitations for snake robots with different configurations. Thus, a strategy for head control based on segmented kinematics is proposed. Compared with the existing head control strategies, our strategy can adapt to different structures of snake robots, whether wheeled or non-wheeled. In addition, our strategy can realize the accurate manipulation of the snake robot head. The robot body is divided into the base part, neck part and head part. First, parameters of backbone curve are optimized for enlarging the area of the support polygon. Then the desired pose for the head link and the dexterous workspace of the head part can in turn derive the desired position and direction of the end frame for the neck part. An optimization algorithm is proposed to help the end frame of the neck part approach a desired one and obtains the joint angles of the neck part. When the actual frames of the neck part are determined, the dexterous workspace of the head part will cover the desired pose of the head link. Then the TRAC-IK inverse kinematics algorithm is adopted to solve the joint angles of the head part. To avoid the collision between the body and the ground, a trajectory planning method of the overall body in Cartesian space is proposed. Finally, simulations validate the effectiveness of the control strategy.


Sign in / Sign up

Export Citation Format

Share Document