Modelling and control of a smart auxiliary mass damper equipped with a bragg grating

Author(s):  
Chris May ◽  
Aldo Minardo ◽  
Ciro Natale ◽  
Pietro Pagliarulo ◽  
Salvatore Pirozzi
2009 ◽  
Vol 153 (2) ◽  
pp. 180-186 ◽  
Author(s):  
Alberto Cavallo ◽  
Chris May ◽  
Aldo Minardo ◽  
Ciro Natale ◽  
Pietro Pagliarulo ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3639
Author(s):  
Abdelfateh Kerrouche ◽  
Taoufik Najeh ◽  
Pablo Jaen-Sola

Railway infrastructure plays a major role in providing the most cost-effective way to transport freight and passengers. The increase in train speed, traffic growth, heavier axles, and harsh environments make railway assets susceptible to degradation and failure. Railway switches and crossings (S&C) are a key element in any railway network, providing flexible traffic for trains to switch between tracks (through or turnout direction). S&C systems have complex structures, with many components, such as crossing parts, frogs, switchblades, and point machines. Many technologies (e.g., electrical, mechanical, and electronic devices) are used to operate and control S&C. These S&C systems are subject to failures and malfunctions that can cause delays, traffic disruptions, and even deadly accidents. Suitable field-based monitoring techniques to deal with fault detection in railway S&C systems are sought after. Wear is the major cause of S&C system failures. A novel measuring method to monitor excessive wear on the frog, as part of S&C, based on fiber Bragg grating (FBG) optical fiber sensors, is discussed in this paper. The developed solution is based on FBG sensors measuring the strain profile of the frog of S&C to determine wear size. A numerical model of a 3D prototype was developed through the finite element method, to define loading testing conditions, as well as for comparison with experimental tests. The sensors were examined under periodic and controlled loading tests. Results of this pilot study, based on simulation and laboratory tests, have shown a correlation for the static load. It was shown that the results of the experimental and the numerical studies were in good agreement.


Author(s):  
Masanori Imazeki ◽  
Koji Tanida ◽  
Masao Mutaguchi ◽  
Yuji Koike ◽  
Tamotsu Murata ◽  
...  

Abstract A hybrid mass damper system has been developed with a view to counteracting wind- and earthquake-excited vibrations of large high-rise building structures. In order to eliminate the large space needed to accommodate a pendulum-type mass damper adapted to the long period of high-rise building, mechanism has been devised for suspending the auxiliary mass on a V-shaped rail sliding on rollers. The base angle of the V-shaped rail is varied for adjusting the natural period of the mass damper system. A suboptimal algorithm based on the minimum norm method has been adopted for designing the auxiliary mass driving system. Three units of this damper system, each equipped with auxiliary mass weighing 110 tons, have been installed on a 52-story building. Satisfactory performance conforming in all practical aspects with design has been verified from vibration test on actual building after installation. As sequel, the functioning of the system during the first year of service is also reported.


Author(s):  
Sookyuk Bang ◽  
Soyoung Ahn

This study analyzes the behavior of heterogeneous connected and autonomous vehicles (CAVs) and proposes the best vehicle sequence for optimal platoon throughput and platoon formation. A spring-mass-damper (SMD) system is adopted for control of CAVs, and the control parameters are formulated in relation to the physical capabilities of vehicles. To gain insight, we consider three types of vehicle: passenger cars, mini-vans, and heavy-duty vehicles. For each type, we investigate the maximum platoon throughput and the clustering time, defined as the time to reach the target equilibrium state. We further investigate different sequences of vehicle types in a platoon to identify the optimal vehicle order that maximizes the throughput and minimizes clustering time. Findings suggest that the highest performance vehicle (in relation to acceleration capability) should be placed as the leader of a platoon and that the number of passenger cars behind heavy vehicles (e.g., semi-trailers) should be minimized in the platoon. In addition, we examine how the proportions of lower performance vehicles affect throughput and clustering times. The result suggests that the higher the proportions, the lower the throughput and the longer the clustering time. The lowest performance vehicle had the greatest effect.


2019 ◽  
Vol 13 ◽  
Author(s):  
Luca Massari ◽  
Calogero M. Oddo ◽  
Edoardo Sinibaldi ◽  
Renaud Detry ◽  
Joseph Bowkett ◽  
...  

2019 ◽  
Vol 25 (11) ◽  
pp. 1768-1779 ◽  
Author(s):  
Jun Dai ◽  
Zhao-Dong Xu ◽  
Pan-Pan Gai

The purpose of this paper is to investigate the contribution of viscoelastic material (VEM) to the control performance of the viscoelastic tuned mass damper (VTMD). Firstly, the equivalent fractional derivation Kelvin model is used to describe the frequency dependence of viscoelasticity in VTMD, and an index is proposed to characterize the level of frequency dependence. Then the effects of the high loss factor of VEM and frequency dependence of viscoelasticity on the effectiveness and robustness of VTMD control are analyzed by numerical examples. At last, a design strategy for VTMD is proposed to select the type of VEM and optimize its stiffness contribution. The results show that the frequency dependence of shear storage modulus of VEM is beneficial to further reduce the dynamic response of the primary structure equipped with VTMD, and the loss factor of VEM determines the optimum frequency ratio and control effect of VTMD. Compared to the conventional tuned mass damper, VTMD has a better robustness for the positive error of the natural frequency of VTMD but has a worse robustness for the negative error. The frequency dependence of shear storage modulus of VEM is beneficial to the robustness of VTMD for both the positive and negative errors of the natural frequency of the primary structure. The VEM with a strong frequency dependence of shear storage modulus is the ideal VEM for VTMD, and the proposed design strategy can deal with the trade-off between the control effectiveness and control robustness of VTMD.


Sign in / Sign up

Export Citation Format

Share Document