Trajectory Optimization of Energy Consumption and Expected Service Life of a Robotic System

Author(s):  
Florian Stuhlenmiller ◽  
Debora Clever ◽  
Stephan Rinderknecht ◽  
Michael Lutter ◽  
Jan Peters
2018 ◽  
Vol 2018 ◽  
pp. 1-26
Author(s):  
Ying He ◽  
Jiangping Mei ◽  
Zhiwei Fang ◽  
Fan Zhang ◽  
Yanqin Zhao

Palletizing robot is widely used in logistics operation. At present, people pay attention to not only the loading capacity and working efficiency of palletizing robots, but also the energy consumption in their working process. This paper takes MD1200-YJ palletizing robot as the research object and studies the problem of low energy consumption optimization of joint driving system from the perspective of trajectory optimization. Firstly, a multifactor dynamic model of palletizing robot is established based on the conventional inverse rigid body dynamic model of the robot, the Stribeck friction model and the spring balance torque model. And then based on joint torque, friction torque, motion parameter, and joule’s law, the useful work model, thermal loss model of joint motor, friction energy consumption model of joint system, and total energy consumption model of palletizing robot are established, and through simulation and experiment, the correctness of the multifactor dynamic model and energy consumption model is verified. Secondly, based on the Fourier series approximation method to construct the joint trajectory expression, the minimum total energy consumption as the optimization objective, with coefficients of Fourier series as optimization variables, the motion parameters of initial and final position, and running time constant as constraint conditions, the genetic algorithm is used to solve the optimization problem. Finally, through the simulation analysis the optimized Fourier series motion law and the 3-4-5 polynomial motion law are comprehensively evaluated to verify the effectiveness of the optimization method. Moreover, it provides the theoretical basis for the follow-up research and points out the direction of improvement.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1100 ◽  
Author(s):  
Julio Francisco Acosta Núñez ◽  
Víctor Hugo Andaluz Ortiz ◽  
Guillermo González-de-Rivera Peces ◽  
Javier Garrido Salas

The work presents the kinematic and dynamic control of a mobile robotic manipulator system based on numerical methods. The proposal also presents the curvature analysis of a path not parameterized in time, for the optimization of energy consumption. The energy optimization considers two aspects: the velocity of execution in curves and the amount of movements generated by the robotic system. When a curve occurs on the predefined path, the execution velocity is analyzed throughout the system in a unified method to prevent skid effects from affecting the mobile manipulator, while the number of movements is limited by the redundancy presented by the robotic system to optimize energy use. The experimental results are shown to validate the mechanical and electronic construction of the system, the proposed controllers, and the saving of energy consumption.


Author(s):  
Baochen Wei ◽  
Feng Gao

For traditional 2-DoF excavating mechanism of electric mining shovel, the log spiral trajectory is regarded as the optimal digging trajectory with less energy consumption. The design of new 3-DoF excavating mechanism is aimed for a mechanism more dexterous than the traditional 2-DoF one, thus reduces the digging energy consumption. The optimal trajectory of the new mechanism should be different from the traditional one. This paper considers different possibilities of excavating manners and different kind of digging trajectories. With the method of polynomial fitting, the approximately optimal trajectory is obtained. With the numerical simulation, it shows that the new 3-DOF excavating mechanism is energy-efficient compared with the traditional excavating mechanism.


2020 ◽  
Author(s):  
Wentao Li ◽  
Mingxiong Zhao ◽  
Yuhui Wu ◽  
Junjie Yu ◽  
Lingyan Bao ◽  
...  

Abstract Recently, unmanned aerial vehicle (UAV) acts as the aerial mobile edge computing (MEC) node to help the battery-limited Internet of Things (IoT) devices relieve burdens from computation and data collection, and prolong the lifetime of operating. However, IoT devices can ONLY ask UAV for either computing or caching help, and collaborative offloading services of UAV is rarely mentioned in the literature. Moreover, IoT device has multiple mutually independent tasks, which make collaborative offloading policy design even more challenging. Therefore, we investigate a UAV-enabled MEC networks with the consideration of multiple tasks either for computing or caching. Taking the quality of experience (QoE) requirement of time-sensitive tasks into consideration, we aim to minimize the total energy consumption of IoT devices by jointly optimizing trajectory, communication and computing resource allocation at UAV, and task offloading decision at IoT devices. Since this problem has highly non-convex objective function and constraints, we first decompose the original problem into three subproblems named as trajectory optimization ($\mathbf{P_T}$), resource allocation at UAV ($\mathbf{P_R}$) and offloading decisions at IoT devices ($\mathbf{P_O}$), then propose an iterative algorithm based on block coordinate descent method to cope with them in a sequence. Numerical results demonstrate that collaborative offloading can effectively reduce IoT devices’ energy consumption while meeting different kinds of offloading services, and satisfy the QoE requirement of time-sensitive tasks at IoT devices.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3919
Author(s):  
Yu Meng ◽  
Huazhen Fang ◽  
Guodong Liang ◽  
Qing Gu ◽  
Li Liu

We propose an optimal planning scheme of the bucket trajectory in the LHD (Load-Haul-Dump) automatic shoveling system to improve the effectiveness of the scooping operation. The research involves simulation of four typical shoveling methods, optimization of the scooping trajectory, establishment of a reaction force model in the scooping process and determination of optimal trajectory. Firstly, we compared the one-step, step-by-step, excavation and coordinated shoveling method by the Engineering Discrete Element Method (EDEM) simulation. The coordinated shoveling method becomes the best choice on account of its best comprehensive performance among the four methods. Based on the coordinated shoveling method, the shape of the optimized trajectory can be roughly determined. Then, we established a model of bucket force during the shoveling process by applying Coulomb’s passive earth pressure theory for the purpose of calculating energy consumption. The trajectory is finally determined through optimizing the minimum energy consumption in theory. The theoretical value is verified by the EDEM simulation.


Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 80
Author(s):  
Shengqiao Hu ◽  
Huimin Kang ◽  
Hao Tang ◽  
Zhengjie Cui ◽  
Zhicheng Liu ◽  
...  

To improve high motion accuracy and efficiency in the high-speed operation of a 4-DOF (4 degrees of freedom) redundant parallel robot, this paper introduces a trajectory planning of the parallel robot in joint space based on the twelve-phase sine jerk motion profile. The 12-phase sine jerk motion profile utilizes the characteristics of a sine function. Furthermore, the penalty function is used to optimize the trajectory energy consumption under the constraint condition. The simulation and experimental results show that the energy consumption of joint space is slightly higher than that of the three-phase sine jerk motion profile, but the overall operation is more accurate and stable. Specifically, the sudden change of force and velocity in each joint is eliminated, which is the cause of mechanism oscillation. Moreover, the force of each joint is more average. The results indicate that each movement is closer to the maximum allowable limit and the running efficiency is higher.


2000 ◽  
Vol 12 (2) ◽  
pp. 190-192
Author(s):  
Kohki Isago ◽  

The consumption of copy or print paper has been rapidly increasing. There are several aspects to be considered for environmental conservation, for example, resource of woods, energy consumption and paper trash in office, etc. We have been developing the toner removal system from copied paper since 1993. We have improved such as machine service life, toner removal mechanism, toner removal quality, special paper and running cost, etc. We have developed a commercial prototype. The system proved that a toner removal system permits reuse of a copied paper multiple times so that the system is effective for environment conservation.


2014 ◽  
Vol 19 (Supplement_1) ◽  
pp. S161-S171 ◽  
Author(s):  
Endong Wang ◽  
Zhigang Shen

Accurate prediction of buildings’ lifecycle energy consumption is a critical part in lifecycle assessment of residential buildings. Longitudinal variations in building conditions, weather conditions and building's service life can cause significant deviation of the prediction from the real lifecycle energy consumption. The objective is to improve the accuracy of lifecycle energy consumption prediction by properly modelling the longitudinal variations in residential energy consumption model using Markov chain based stochastic approach. A stochastic Markov model considering longitudinal uncertainties in building condition, degree days, and service life is developed: 1) Building's service life is estimated through Markov deterioration curve derived from actual building condition data; 2) Neural Network is used to project periodic energy consumption distribution for each joint energy state of building condition and temperature state; 3) Lifecycle energy consumption is aggregated based on Markov process and the state probability. A case study on predicting lifecycle energy consumption of a residential building is presented using the proposed model and the result is compared to that of a traditional deterministic model and three years’ measured annual energy consumptions. It shows that the former model generates much narrower distribution than the latter model when compared to the measured data, which indicates improved result.


Sign in / Sign up

Export Citation Format

Share Document