Social Distancing and Face Mask Detection using Deep Learning Models: A Survey

Author(s):  
S. Vijaya Shetty ◽  
Keerthi Anand ◽  
Pooja S ◽  
Punnya K A ◽  
Priyanka M
2021 ◽  
Author(s):  
Rafael S. Toledo ◽  
Eric A. Antonelo

Variational AutoEncoders (VAE) employ deep learning models to learn a continuous latent z-space that is subjacent to a high-dimensional observed dataset. With that, many tasks are made possible, including face reconstruction and face synthesis. In this work, we investigated how face masks can help the training of VAEs for face reconstruction, by restricting the learning to the pixels selected by the face mask. An evaluation of the proposal using the celebA dataset shows that the reconstructed images are enhanced with the face masks, especially when SSIM loss is used either with l1 or l2 loss functions. We noticed that the inclusion of a decoder for face mask prediction in the architecture affected the performance for l1 or l2 loss functions, while this was not the case for the SSIM loss. Besides, SSIM perceptual loss yielded the crispest samples between all hypotheses tested, although it shifts the original color of the image, making the usage of the l1 or l2 losses together with SSIM helpful to solve this issue.


Author(s):  
Rohan Katari Et al.

The world is in the midst of a paramount pandemic owing to the rapid dissemination of coronavirus disease (COVID-19) brought about by the spread of the virus ‘SARS-CoV-2’. It is mainly transmitted among persons through airborne diffusion of droplets containing the virus produced by an infected person sneezing or coughing without covering their face. The World Health Organization (WHO) has issued numerous guidelines which state that the spread of this disease can be limited by people shielding their faces with protective face masks when in public or in crowded areas. As a precautionary measure, many nations have implemented obligations for face mask usage in public spaces. But manual monitoring of huge crowds in public spaces for face masks is laborious. Hence, this requires the development of an automated face mask detection system using deep learning models and related technologies. The detection system should be viable and deployable in real-time, predicting the result accurately so as to be used by monitoring bodies to ensure that the face mask guidelines are followed by the public thereby preventing the disease transmission. In this paper we aim to perform a comparative analysis of various sophisticated image classifiers based on deep learning, in terms of vital metrics of performance to identify the effective deep learning based model for face mask detection.


2021 ◽  
Vol 1 (2) ◽  
pp. 1-10
Author(s):  
Saurabh Yadav ◽  

This paper presents a methodology for social distance detection using deep learning models and algorithms such as YOLO and CNN. Deep learning is one of those technologies which have greatly enhanced the overall experience of the technology that humans use. Deep learning has brought a lot of changes from self-driven cars made by Tesla to the smallest object detection model. Deep learning, artificial intelligence, and machine learning provide a way to be able to put things to use. The purpose of this paper is to be able to implement real-time object detection to detect social distancing.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247440
Author(s):  
Adina Rahim ◽  
Ayesha Maqbool ◽  
Tauseef Rana

The purpose of this work is to provide an effective social distance monitoring solution in low light environments in a pandemic situation. The raging coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has brought a global crisis with its deadly spread all over the world. In the absence of an effective treatment and vaccine the efforts to control this pandemic strictly rely on personal preventive actions, e.g., handwashing, face mask usage, environmental cleaning, and most importantly on social distancing which is the only expedient approach to cope with this situation. Low light environments can become a problem in the spread of disease because of people’s night gatherings. Especially, in summers when the global temperature is at its peak, the situation can become more critical. Mostly, in cities where people have congested homes and no proper air cross-system is available. So, they find ways to get out of their homes with their families during the night to take fresh air. In such a situation, it is necessary to take effective measures to monitor the safety distance criteria to avoid more positive cases and to control the death toll. In this paper, a deep learning-based solution is proposed for the above-stated problem. The proposed framework utilizes the you only look once v4 (YOLO v4) model for real-time object detection and the social distance measuring approach is introduced with a single motionless time of flight (ToF) camera. The risk factor is indicated based on the calculated distance and safety distance violations are highlighted. Experimental results show that the proposed model exhibits good performance with 97.84% mean average precision (mAP) score and the observed mean absolute error (MAE) between actual and measured social distance values is 1.01 cm.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2019 ◽  
Author(s):  
Mohammad Rezaei ◽  
Yanjun Li ◽  
Xiaolin Li ◽  
Chenglong Li

<b>Introduction:</b> The ability to discriminate among ligands binding to the same protein target in terms of their relative binding affinity lies at the heart of structure-based drug design. Any improvement in the accuracy and reliability of binding affinity prediction methods decreases the discrepancy between experimental and computational results.<br><b>Objectives:</b> The primary objectives were to find the most relevant features affecting binding affinity prediction, least use of manual feature engineering, and improving the reliability of binding affinity prediction using efficient deep learning models by tuning the model hyperparameters.<br><b>Methods:</b> The binding site of target proteins was represented as a grid box around their bound ligand. Both binary and distance-dependent occupancies were examined for how an atom affects its neighbor voxels in this grid. A combination of different features including ANOLEA, ligand elements, and Arpeggio atom types were used to represent the input. An efficient convolutional neural network (CNN) architecture, DeepAtom, was developed, trained and tested on the PDBbind v2016 dataset. Additionally an extended benchmark dataset was compiled to train and evaluate the models.<br><b>Results: </b>The best DeepAtom model showed an improved accuracy in the binding affinity prediction on PDBbind core subset (Pearson’s R=0.83) and is better than the recent state-of-the-art models in this field. In addition when the DeepAtom model was trained on our proposed benchmark dataset, it yields higher correlation compared to the baseline which confirms the value of our model.<br><b>Conclusions:</b> The promising results for the predicted binding affinities is expected to pave the way for embedding deep learning models in virtual screening and rational drug design fields.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


Sign in / Sign up

Export Citation Format

Share Document