Large-Scale Brain Network Modelling Using Graph-Theory Approach in Neuroscience

Author(s):  
Sneha Ray ◽  
Rajanikant Panda ◽  
Rose Dawn Bharath
2020 ◽  
Author(s):  
Paul Triebkorn ◽  
Joelle Zimmermann ◽  
Leon Stefanovski ◽  
Dipanjan Roy ◽  
Ana Solodkin ◽  
...  

AbstractUsing The Virtual Brain (TVB, thevirtualbrian.org) simulation platform, we explored for 50 individual adult human brains (ages 18-80), how personalized connectome based brain network modelling captures various empirical observations as measured by functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). We compare simulated activity based on individual structural connectomes (SC) inferred from diffusion weighted imaging with fMRI and EEG in the resting state. We systematically explore the role of the following model parameters: conduction velocity, global coupling and graph theoretical features of individual SC. First, a subspace of the parameter space is identified for each subject that results in realistic brain activity, i.e. reproducing the following prominent features of empirical EEG-fMRI activity: topology of resting-state fMRI functional connectivity (FC), functional connectivity dynamics (FCD), electrophysiological oscillations in the delta (3-4 Hz) and alpha (8-12 Hz) frequency range and their bimodality, i.e. low and high energy modes. Interestingly, FCD fit, bimodality and static FC fit are highly correlated. They all show their optimum in the same range of global coupling. In other words, only when our local model is in a bistable regime we are able to generate switching of modes in our global network. Second, our simulations reveal the explicit network mechanisms that lead to electrophysiological oscillations, their bimodal behaviour and inter-regional differences. Third, we discuss biological interpretability of the Stefanescu-Jirsa-Hindmarsh-Rose-3D model when embedded inside the large-scale brain network and mechanisms underlying the emergence of bimodality of the neural signal.With the present study, we set the cornerstone for a systematic catalogue of spatiotemporal brain activity regimes generated with the connectome-based brain simulation platform The Virtual Brain.Author SummaryIn order to understand brain dynamics we use numerical simulations of brain network models. Combining the structural backbone of the brain, that is the white matter fibres connecting distinct regions in the grey matter, with dynamical systems describing the activity of neural populations we are able to simulate brain function on a large scale. In order to make accurate prediction with this network, it is crucial to determine optimal model parameters. We here use an explorative approach to adjust model parameters to individual brain activity, showing that subjects have their own optimal point in the parameter space, depending on their brain structure and function. At the same time, we investigate the relation between bistable phenomena on the scale of neural populations and the changed in functional connectivity on the brain network scale. Our results are important for future modelling approaches trying to make accurate predictions of brain function.


2021 ◽  
Author(s):  
Mangor Pedersen ◽  
Andrew Zalesky

SummaryThe extent to which resting-state fMRI (rsfMRI) reflects direct neuronal changes remains unknown. Using 160 simultaneous rsfMRI and intracranial brain stimulation recordings acquired in 26 individuals with epilepsy (with varying electrode locations), we tested whether brain networks dynamically change during intracranial brain stimulation, aiming to establish whether switching between brain networks is reduced during intracranial brain stimulation. As the brain spontaneously switches between a repertoire of intrinsic functional network configurations and the rate of switching is typically increased in brain disorders, we hypothesised that intracranial stimulation would reduce the brain’s switching rate, thus potentially normalising aberrant brain network dynamics. To test this hypothesis, we quantified the rate that brain regions changed networks over time in response to brain stimulation, using network switching applied to multilayer modularity analysis of time-resolved rsfMRI connectivity. Network switching was significantly decreased during epochs with brain stimulation compared to epochs with no brain stimulation. The initial stimulation onset of brain stimulation was associated with the greatest decrease in network switching, followed by a more consistent reduction in network switching throughout the scans. These changes were most commonly observed in cortical networks spatially distant from the stimulation targets. Our results suggest that neuronal perturbation is likely to modulate large-scale brain networks, and multilayer network modelling may be used to inform the clinical efficacy of brain stimulation in neurological disease.HighlightsrsfMRI network switching is attenuated during intracranial brain stimulationStimulation-induced switching is observed distant from electrode targetsOur results are validated across a range of network parametersNetwork models may inform clinical efficacy of brain stimulation


2017 ◽  
Author(s):  
Mite Mijalkov ◽  
Ehsan Kakaei ◽  
Joana B. Pereira ◽  
Eric Westman ◽  
Giovanni Volpe ◽  
...  

AbstractThe brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH – BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer’s disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson’s patients with mild cognitive impairment.


2019 ◽  
Author(s):  
Amir Hossein Ghaderi ◽  
Bianca R. Baltaretu ◽  
Masood Nemati Andevari ◽  
Vishal Bharmauria ◽  
Fuat Balci

AbstractTo characterize differences between different state-related brain networks, statistical graph theory approaches have been employed to identify informative, topological properties. However, dynamical properties have been studied little in this regard. Our goal here was to introduce spectral graph theory as a reliable approach to determine dynamic properties of functional brain networks and to find how topological versus dynamical features differentiate between such networks. To this goal, 45 participants performed no task with eyes open (EO) or closed (EC) while electroencephalography data were recorded. These data were used to create weighted adjacency matrices for each condition (rest state EO and rest state EC). Then, using the spectral graph theory approach and Shannon entropy, we identified dynamical properties for weighted graphs, and we compared these features with topological aspects of graphs. The results showed that spectral graph theory can distinguish different state-dependent neural networks with different synchronies. On the other hand, correlation analysis indicated that although dynamical and topological properties of random networks are completely independent, these network features can be related in the case of brain generated graphs. In conclusion, the spectral graph theory approach can be used to make inferences about various state-related brain networks, for healthy and clinical populations.Author SummeryBy considering functional communications across different brain regions, a complex network is achieved that is known as functional brain network. Topologically, this network is constructed by different nodes (activity of brain regions or signals over recording electrodes) and different edges (similarity, correlation or phase difference between nodes). Paths, clusters, hubs, and centrality of nodes are examples of topological properties of these networks. However, synchrony and stability of functional brain networks can not be revealed by consideration of topological properties. Alternatively, spectral graph theory (SGT) can demonstrate the dynamic, synchrony and stability of graphs. But this approach has been studied little in brain network analysis. Here, we employed SGT, as well as topological methods, to investigate which approaches are more reliable to find differences between distinct state-related brain networks. On the other hand, we investigated correlations between topology and dynamic in different type of networks (brain generated and random networks). We found that SGT measures can clearly distinguish between distinct state-related brain networks and it can reveal synchrony and complexity of these networks. Also, results show that although dynamic and topology of random-generated graph are completely independent, these properties exhibit several correlations in the case of functional brain networks.


2016 ◽  
Author(s):  
Gustavo Deco ◽  
Morten L. Kringelbach ◽  
Viktor K. Jirsa ◽  
Petra Ritter

AbstractIn the human brain, spontaneous activity during resting state consists of rapid transitions between functional network states over time but the underlying mechanisms are not understood. We use connectome based computational brain network modeling to reveal fundamental principles of how the human brain generates large-scale activity observable by noninvasive neuroimaging. By including individual structural and functional neuroimaging data into brain network models we construct personalized brain models. With this novel approach, we reveal that the human brain during resting state operates at maximum metastability, i.e. in a state of maximum network switching. In addition, we investigate cortical heterogeneity across areas. Optimization of the spectral characteristics of each local brain region revealed the dynamical cortical core of the human brain, which is driving the activity of the rest of the whole brain. Personalized brain network modelling goes beyond correlational neuroimaging analysis and reveals non-trivial network mechanisms underlying non-invasive observations. Our novel findings significantly pertain to the important role of computational connectomics in understanding principles of brain function.


Algorithms ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 270
Author(s):  
Sambor Guze

Nowadays, transport is the basis for the functioning of national, continental, and global economies. Thus, many governments recognize it as a critical element in ensuring the daily existence of societies in their countries. Those responsible for the proper operation of the transport sector must have the right tools to model, analyze, and optimize its elements. One of the most critical problems is the need to prevent bottlenecks in transport networks. Thus, the main aim of the article was to define the parameters characterizing the transportation network vulnerability and select algorithms to support their search. The parameters proposed are based on characteristics related to domination in graph theory. The domination, edge-domination concepts, and related topics, such as bondage-connected and weighted bondage-connected numbers, were applied as the tools for searching and identifying the bottlenecks in transportation networks. Furthermore, the algorithms for finding the minimal dominating set and minimal (maximal) weighted dominating sets are proposed. This way, the exemplary academic transportation network was analyzed in two cases: stationary and dynamic. Some conclusions are presented. The main one is the fact that the methods given in this article are universal and applicable to both small and large-scale networks. Moreover, the approach can support the dynamic analysis of bottlenecks in transport networks.


Author(s):  
André Monteiro Paschoal ◽  
Pedro Henrique Rodrigues Silva ◽  
Carlo Rondinoni ◽  
Isabella Velloso Arrigo ◽  
Fernando Fernandes Paiva ◽  
...  

2020 ◽  
Vol 31 (6) ◽  
pp. 681-689
Author(s):  
Jalal Mirakhorli ◽  
Hamidreza Amindavar ◽  
Mojgan Mirakhorli

AbstractFunctional magnetic resonance imaging a neuroimaging technique which is used in brain disorders and dysfunction studies, has been improved in recent years by mapping the topology of the brain connections, named connectopic mapping. Based on the fact that healthy and unhealthy brain regions and functions differ slightly, studying the complex topology of the functional and structural networks in the human brain is too complicated considering the growth of evaluation measures. One of the applications of irregular graph deep learning is to analyze the human cognitive functions related to the gene expression and related distributed spatial patterns. Since a variety of brain solutions can be dynamically held in the neuronal networks of the brain with different activity patterns and functional connectivity, both node-centric and graph-centric tasks are involved in this application. In this study, we used an individual generative model and high order graph analysis for the region of interest recognition areas of the brain with abnormal connection during performing certain tasks and resting-state or decompose irregular observations. Accordingly, a high order framework of Variational Graph Autoencoder with a Gaussian distributer was proposed in the paper to analyze the functional data in brain imaging studies in which Generative Adversarial Network is employed for optimizing the latent space in the process of learning strong non-rigid graphs among large scale data. Furthermore, the possible modes of correlations were distinguished in abnormal brain connections. Our goal was to find the degree of correlation between the affected regions and their simultaneous occurrence over time. We can take advantage of this to diagnose brain diseases or show the ability of the nervous system to modify brain topology at all angles and brain plasticity according to input stimuli. In this study, we particularly focused on Alzheimer’s disease.


2021 ◽  
Vol 11 (7) ◽  
pp. 679
Author(s):  
Vincenzo Alfano ◽  
Mariachiara Longarzo ◽  
Giulia Mele ◽  
Marcello Esposito ◽  
Marco Aiello ◽  
...  

Apathy is a neuropsychiatric condition characterized by reduced motivation, initiative, and interest in daily life activities, and it is commonly reported in several neurodegenerative disorders. The study aims to investigate large-scale brain networks involved in apathy syndrome in patients with frontotemporal dementia (FTD) and Parkinson’s disease (PD) compared to a group of healthy controls (HC). The study sample includes a total of 60 subjects: 20 apathetic FTD and PD patients, 20 non apathetic FTD and PD patients, and 20 HC matched for age. Two disease-specific apathy-evaluation scales were used to measure the presence of apathy in FTD and PD patients; in the same day, a 3T brain magnetic resonance imaging (MRI) with structural and resting-state functional (fMRI) sequences was acquired. Differences in functional connectivity (FC) were assessed between apathetic and non-apathetic patients with and without primary clinical diagnosis revealed, using a whole-brain, seed-to-seed approach. A significant hypoconnectivity between apathetic patients (both FTD and PD) and HC was detected between left planum polare and both right pre- or post-central gyrus. Finally, to investigate whether such neural alterations were due to the underlying neurodegenerative pathology, we replicated the analysis by considering two independent patients’ samples (i.e., non-apathetic PD and FTD). In these groups, functional differences were no longer detected. These alterations may subtend the involvement of neural pathways implicated in a specific reduction of information/elaboration processing and motor outcome in apathetic patients.


Sign in / Sign up

Export Citation Format

Share Document