Exploiting Graph Convolutional Networks for Representation Learning of Mobile App Usage

Author(s):  
Keiichi Ochiai ◽  
Naoki Yamamoto ◽  
Takashi Hamatani ◽  
Yusuke Fukazawa ◽  
Takayasu Yamaguchi
Author(s):  
Shengsheng Qian ◽  
Jun Hu ◽  
Quan Fang ◽  
Changsheng Xu

In this article, we focus on fake news detection task and aim to automatically identify the fake news from vast amount of social media posts. To date, many approaches have been proposed to detect fake news, which includes traditional learning methods and deep learning-based models. However, there are three existing challenges: (i) How to represent social media posts effectively, since the post content is various and highly complicated; (ii) how to propose a data-driven method to increase the flexibility of the model to deal with the samples in different contexts and news backgrounds; and (iii) how to fully utilize the additional auxiliary information (the background knowledge and multi-modal information) of posts for better representation learning. To tackle the above challenges, we propose a novel Knowledge-aware Multi-modal Adaptive Graph Convolutional Networks (KMAGCN) to capture the semantic representations by jointly modeling the textual information, knowledge concepts, and visual information into a unified framework for fake news detection. We model posts as graphs and use a knowledge-aware multi-modal adaptive graph learning principal for the effective feature learning. Compared with existing methods, the proposed KMAGCN addresses challenges from three aspects: (1) It models posts as graphs to capture the non-consecutive and long-range semantic relations; (2) it proposes a novel adaptive graph convolutional network to handle the variability of graph data; and (3) it leverages textual information, knowledge concepts and visual information jointly for model learning. We have conducted extensive experiments on three public real-world datasets and superior results demonstrate the effectiveness of KMAGCN compared with other state-of-the-art algorithms.


2020 ◽  
Vol 34 (01) ◽  
pp. 27-34 ◽  
Author(s):  
Lei Chen ◽  
Le Wu ◽  
Richang Hong ◽  
Kun Zhang ◽  
Meng Wang

Graph Convolutional Networks~(GCNs) are state-of-the-art graph based representation learning models by iteratively stacking multiple layers of convolution aggregation operations and non-linear activation operations. Recently, in Collaborative Filtering~(CF) based Recommender Systems~(RS), by treating the user-item interaction behavior as a bipartite graph, some researchers model higher-layer collaborative signals with GCNs. These GCN based recommender models show superior performance compared to traditional works. However, these models suffer from training difficulty with non-linear activations for large user-item graphs. Besides, most GCN based models could not model deeper layers due to the over smoothing effect with the graph convolution operation. In this paper, we revisit GCN based CF models from two aspects. First, we empirically show that removing non-linearities would enhance recommendation performance, which is consistent with the theories in simple graph convolutional networks. Second, we propose a residual network structure that is specifically designed for CF with user-item interaction modeling, which alleviates the over smoothing problem in graph convolution aggregation operation with sparse user-item interaction data. The proposed model is a linear model and it is easy to train, scale to large datasets, and yield better efficiency and effectiveness on two real datasets. We publish the source code at https://github.com/newlei/LR-GCCF.


Author(s):  
Federico Baldassarre ◽  
David Menéndez Hurtado ◽  
Arne Elofsson ◽  
Hossein Azizpour

Abstract Motivation Proteins are ubiquitous molecules whose function in biological processes is determined by their 3D structure. Experimental identification of a protein’s structure can be time-consuming, prohibitively expensive and not always possible. Alternatively, protein folding can be modeled using computational methods, which however are not guaranteed to always produce optimal results. GraphQA is a graph-based method to estimate the quality of protein models, that possesses favorable properties such as representation learning, explicit modeling of both sequential and 3D structure, geometric invariance and computational efficiency. Results GraphQA performs similarly to state-of-the-art methods despite using a relatively low number of input features. In addition, the graph network structure provides an improvement over the architecture used in ProQ4 operating on the same input features. Finally, the individual contributions of GraphQA components are carefully evaluated. Availability and implementation PyTorch implementation, datasets, experiments and link to an evaluation server are available through this GitHub repository: github.com/baldassarreFe/graphqa. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fangyuan Lei ◽  
Xun Liu ◽  
Qingyun Dai ◽  
Bingo Wing-Kuen Ling ◽  
Huimin Zhao ◽  
...  

With the higher-order neighborhood information of a graph network, the accuracy of graph representation learning classification can be significantly improved. However, the current higher-order graph convolutional networks have a large number of parameters and high computational complexity. Therefore, we propose a hybrid lower-order and higher-order graph convolutional network (HLHG) learning model, which uses a weight sharing mechanism to reduce the number of network parameters. To reduce the computational complexity, we propose a novel information fusion pooling layer to combine the high-order and low-order neighborhood matrix information. We theoretically compare the computational complexity and the number of parameters of the proposed model with those of the other state-of-the-art models. Experimentally, we verify the proposed model on large-scale text network datasets using supervised learning and on citation network datasets using semisupervised learning. The experimental results show that the proposed model achieves higher classification accuracy with a small set of trainable weight parameters.


Author(s):  
Min Shi ◽  
Yufei Tang ◽  
Xingquan Zhu ◽  
David Wilson ◽  
Jianxun Liu

Networked data often demonstrate the Pareto principle (i.e., 80/20 rule) with skewed class distributions, where most vertices belong to a few majority classes and minority classes only contain a handful of instances. When presented with imbalanced class distributions, existing graph embedding learning tends to bias to nodes from majority classes, leaving nodes from minority classes under-trained. In this paper, we propose Dual-Regularized Graph Convolutional Networks (DR-GCN) to handle multi-class imbalanced graphs, where two types of regularization are imposed to tackle class imbalanced representation learning. To ensure that all classes are equally represented, we propose a class-conditioned adversarial training process to facilitate the separation of labeled nodes. Meanwhile, to maintain training equilibrium (i.e., retaining quality of fit across all classes), we force unlabeled nodes to follow a similar latent distribution to the labeled nodes by minimizing their difference in the embedding space. Experiments on real-world imbalanced graphs demonstrate that DR-GCN outperforms the state-of-the-art methods in node classification, graph clustering, and visualization.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Lorenzo Zangari ◽  
Roberto Interdonato ◽  
Antonio Calió ◽  
Andrea Tagarelli

AbstractGraph Neural Networks (GNNs) are powerful tools that are nowadays reaching state of the art performances in a plethora of different tasks such as node classification, link prediction and graph classification. A challenging aspect in this context is to redefine basic deep learning operations, such as convolution, on graph-like structures, where nodes generally have unordered neighborhoods of varying size. State-of-the-art GNN approaches such as Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs) work on monoplex networks only, i.e., on networks modeling a single type of relation among an homogeneous set of nodes. The aim of this work is to generalize such approaches by proposing a GNN framework for representation learning and semi-supervised classification in multilayer networks with attributed entities, and arbitrary number of layers and intra-layer and inter-layer connections between nodes. We instantiate our framework with two new formulations of GAT and GCN models, namely and , specifically devised for general, attributed multilayer networks. The proposed approaches are evaluated on an entity classification task on nine widely used real-world network datasets coming from different domains and with different structural characteristics. Results show that both our proposed and methods provide effective and efficient solutions to the problem of entity classification in multilayer attributed networks, being faster to learn and offering better accuracy than the competitors. Furthermore, results show how our methods are able to take advantage of the presence of real attributes for the entities, in addition to arbitrary inter-layer connections between the nodes in the various layers.


2020 ◽  
Vol 34 (04) ◽  
pp. 4916-4923
Author(s):  
Yanbei Liu ◽  
Xiao Wang ◽  
Shu Wu ◽  
Zhitao Xiao

We address the problem of disentangled representation learning with independent latent factors in graph convolutional networks (GCNs). The current methods usually learn node representation by describing its neighborhood as a perceptual whole in a holistic manner while ignoring the entanglement of the latent factors. However, a real-world graph is formed by the complex interaction of many latent factors (e.g., the same hobby, education or work in social network). While little effort has been made toward exploring the disentangled representation in GCNs. In this paper, we propose a novel Independence Promoted Graph Disentangled Networks (IPGDN) to learn disentangled node representation while enhancing the independence among node representations. In particular, we firstly present disentangled representation learning by neighborhood routing mechanism, and then employ the Hilbert-Schmidt Independence Criterion (HSIC) to enforce independence between the latent representations, which is effectively integrated into a graph convolutional framework as a regularizer at the output layer. Experimental studies on real-world graphs validate our model and demonstrate that our algorithms outperform the state-of-the-arts by a wide margin in different network applications, including semi-supervised graph classification, graph clustering and graph visualization.


Sign in / Sign up

Export Citation Format

Share Document