scholarly journals Multi-Class Imbalanced Graph Convolutional Network Learning

Author(s):  
Min Shi ◽  
Yufei Tang ◽  
Xingquan Zhu ◽  
David Wilson ◽  
Jianxun Liu

Networked data often demonstrate the Pareto principle (i.e., 80/20 rule) with skewed class distributions, where most vertices belong to a few majority classes and minority classes only contain a handful of instances. When presented with imbalanced class distributions, existing graph embedding learning tends to bias to nodes from majority classes, leaving nodes from minority classes under-trained. In this paper, we propose Dual-Regularized Graph Convolutional Networks (DR-GCN) to handle multi-class imbalanced graphs, where two types of regularization are imposed to tackle class imbalanced representation learning. To ensure that all classes are equally represented, we propose a class-conditioned adversarial training process to facilitate the separation of labeled nodes. Meanwhile, to maintain training equilibrium (i.e., retaining quality of fit across all classes), we force unlabeled nodes to follow a similar latent distribution to the labeled nodes by minimizing their difference in the embedding space. Experiments on real-world imbalanced graphs demonstrate that DR-GCN outperforms the state-of-the-art methods in node classification, graph clustering, and visualization.

2021 ◽  
Vol 11 (15) ◽  
pp. 6975
Author(s):  
Tao Zhang ◽  
Lun He ◽  
Xudong Li ◽  
Guoqing Feng

Lipreading aims to recognize sentences being spoken by a talking face. In recent years, the lipreading method has achieved a high level of accuracy on large datasets and made breakthrough progress. However, lipreading is still far from being solved, and existing methods tend to have high error rates on the wild data and have the defects of disappearing training gradient and slow convergence. To overcome these problems, we proposed an efficient end-to-end sentence-level lipreading model, using an encoder based on a 3D convolutional network, ResNet50, Temporal Convolutional Network (TCN), and a CTC objective function as the decoder. More importantly, the proposed architecture incorporates TCN as a feature learner to decode feature. It can partly eliminate the defects of RNN (LSTM, GRU) gradient disappearance and insufficient performance, and this yields notable performance improvement as well as faster convergence. Experiments show that the training and convergence speed are 50% faster than the state-of-the-art method, and improved accuracy by 2.4% on the GRID dataset.


Author(s):  
Shengsheng Qian ◽  
Jun Hu ◽  
Quan Fang ◽  
Changsheng Xu

In this article, we focus on fake news detection task and aim to automatically identify the fake news from vast amount of social media posts. To date, many approaches have been proposed to detect fake news, which includes traditional learning methods and deep learning-based models. However, there are three existing challenges: (i) How to represent social media posts effectively, since the post content is various and highly complicated; (ii) how to propose a data-driven method to increase the flexibility of the model to deal with the samples in different contexts and news backgrounds; and (iii) how to fully utilize the additional auxiliary information (the background knowledge and multi-modal information) of posts for better representation learning. To tackle the above challenges, we propose a novel Knowledge-aware Multi-modal Adaptive Graph Convolutional Networks (KMAGCN) to capture the semantic representations by jointly modeling the textual information, knowledge concepts, and visual information into a unified framework for fake news detection. We model posts as graphs and use a knowledge-aware multi-modal adaptive graph learning principal for the effective feature learning. Compared with existing methods, the proposed KMAGCN addresses challenges from three aspects: (1) It models posts as graphs to capture the non-consecutive and long-range semantic relations; (2) it proposes a novel adaptive graph convolutional network to handle the variability of graph data; and (3) it leverages textual information, knowledge concepts and visual information jointly for model learning. We have conducted extensive experiments on three public real-world datasets and superior results demonstrate the effectiveness of KMAGCN compared with other state-of-the-art algorithms.


2021 ◽  
Vol 12 (5) ◽  
pp. 1-21
Author(s):  
Changsen Yuan ◽  
Heyan Huang ◽  
Chong Feng

The Graph Convolutional Network (GCN) is a universal relation extraction method that can predict relations of entity pairs by capturing sentences’ syntactic features. However, existing GCN methods often use dependency parsing to generate graph matrices and learn syntactic features. The quality of the dependency parsing will directly affect the accuracy of the graph matrix and change the whole GCN’s performance. Because of the influence of noisy words and sentence length in the distant supervised dataset, using dependency parsing on sentences causes errors and leads to unreliable information. Therefore, it is difficult to obtain credible graph matrices and relational features for some special sentences. In this article, we present a Multi-Graph Cooperative Learning model (MGCL), which focuses on extracting the reliable syntactic features of relations by different graphs and harnessing them to improve the representations of sentences. We conduct experiments on a widely used real-world dataset, and the experimental results show that our model achieves the state-of-the-art performance of relation extraction.


Author(s):  
Zhichao Huang ◽  
Xutao Li ◽  
Yunming Ye ◽  
Michael K. Ng

Graph Convolutional Networks (GCNs) have been extensively studied in recent years. Most of existing GCN approaches are designed for the homogenous graphs with a single type of relation. However, heterogeneous graphs of multiple types of relations are also ubiquitous and there is a lack of methodologies to tackle such graphs. Some previous studies address the issue by performing conventional GCN on each single relation and then blending their results. However, as the convolutional kernels neglect the correlations across relations, the strategy is sub-optimal. In this paper, we propose the Multi-Relational Graph Convolutional Network (MR-GCN) framework by developing a novel convolution operator on multi-relational graphs. In particular, our multi-dimension convolution operator extends the graph spectral analysis into the eigen-decomposition of a Laplacian tensor. And the eigen-decomposition is formulated with a generalized tensor product, which can correspond to any unitary transform instead of limited merely to Fourier transform. We conduct comprehensive experiments on four real-world multi-relational graphs to solve the semi-supervised node classification task, and the results show the superiority of MR-GCN against the state-of-the-art competitors.


2020 ◽  
Vol 34 (01) ◽  
pp. 27-34 ◽  
Author(s):  
Lei Chen ◽  
Le Wu ◽  
Richang Hong ◽  
Kun Zhang ◽  
Meng Wang

Graph Convolutional Networks~(GCNs) are state-of-the-art graph based representation learning models by iteratively stacking multiple layers of convolution aggregation operations and non-linear activation operations. Recently, in Collaborative Filtering~(CF) based Recommender Systems~(RS), by treating the user-item interaction behavior as a bipartite graph, some researchers model higher-layer collaborative signals with GCNs. These GCN based recommender models show superior performance compared to traditional works. However, these models suffer from training difficulty with non-linear activations for large user-item graphs. Besides, most GCN based models could not model deeper layers due to the over smoothing effect with the graph convolution operation. In this paper, we revisit GCN based CF models from two aspects. First, we empirically show that removing non-linearities would enhance recommendation performance, which is consistent with the theories in simple graph convolutional networks. Second, we propose a residual network structure that is specifically designed for CF with user-item interaction modeling, which alleviates the over smoothing problem in graph convolution aggregation operation with sparse user-item interaction data. The proposed model is a linear model and it is easy to train, scale to large datasets, and yield better efficiency and effectiveness on two real datasets. We publish the source code at https://github.com/newlei/LR-GCCF.


Author(s):  
Liang Yang ◽  
Zesheng Kang ◽  
Xiaochun Cao ◽  
Di Jin ◽  
Bo Yang ◽  
...  

In the past few years, semi-supervised node classification in attributed network has been developed rapidly. Inspired by the success of deep learning, researchers adopt the convolutional neural network to develop the Graph Convolutional Networks (GCN), and they have achieved surprising classification accuracy by considering the topological information and employing the fully connected network (FCN). However, the given network topology may also induce a performance degradation if it is directly employed in classification, because it may possess high sparsity and certain noises. Besides, the lack of learnable filters in GCN also limits the performance. In this paper, we propose a novel Topology Optimization based Graph Convolutional Networks (TO-GCN) to fully utilize the potential information by jointly refining the network topology and learning the parameters of the FCN. According to our derivations, TO-GCN is more flexible than GCN, in which the filters are fixed and only the classifier can be updated during the learning process. Extensive experiments on real attributed networks demonstrate the superiority of the proposed TO-GCN against the state-of-the-art approaches.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fangyuan Lei ◽  
Xun Liu ◽  
Qingyun Dai ◽  
Bingo Wing-Kuen Ling ◽  
Huimin Zhao ◽  
...  

With the higher-order neighborhood information of a graph network, the accuracy of graph representation learning classification can be significantly improved. However, the current higher-order graph convolutional networks have a large number of parameters and high computational complexity. Therefore, we propose a hybrid lower-order and higher-order graph convolutional network (HLHG) learning model, which uses a weight sharing mechanism to reduce the number of network parameters. To reduce the computational complexity, we propose a novel information fusion pooling layer to combine the high-order and low-order neighborhood matrix information. We theoretically compare the computational complexity and the number of parameters of the proposed model with those of the other state-of-the-art models. Experimentally, we verify the proposed model on large-scale text network datasets using supervised learning and on citation network datasets using semisupervised learning. The experimental results show that the proposed model achieves higher classification accuracy with a small set of trainable weight parameters.


2020 ◽  
Vol 34 (04) ◽  
pp. 5892-5899
Author(s):  
Ke Sun ◽  
Zhouchen Lin ◽  
Zhanxing Zhu

Graph Convolutional Networks (GCNs) play a crucial role in graph learning tasks, however, learning graph embedding with few supervised signals is still a difficult problem. In this paper, we propose a novel training algorithm for Graph Convolutional Network, called Multi-Stage Self-Supervised (M3S) Training Algorithm, combined with self-supervised learning approach, focusing on improving the generalization performance of GCNs on graphs with few labeled nodes. Firstly, a Multi-Stage Training Framework is provided as the basis of M3S training method. Then we leverage DeepCluster technique, a popular form of self-supervised learning, and design corresponding aligning mechanism on the embedding space to refine the Multi-Stage Training Framework, resulting in M3S Training Algorithm. Finally, extensive experimental results verify the superior performance of our algorithm on graphs with few labeled nodes under different label rates compared with other state-of-the-art approaches.


2020 ◽  
Vol 34 (06) ◽  
pp. 10001-10008 ◽  
Author(s):  
Qiaoyun Wu ◽  
Dinesh Manocha ◽  
Jun Wang ◽  
Kai Xu

We propose improving the cross-target and cross-scene generalization of visual navigation through learning an agent that is guided by conceiving the next observations it expects to see. This is achieved by learning a variational Bayesian model, called NeoNav, which generates the next expected observations (NEO) conditioned on the current observations of the agent and the target view. Our generative model is learned through optimizing a variational objective encompassing two key designs. First, the latent distribution is conditioned on current observations and the target view, leading to a model-based, target-driven navigation. Second, the latent space is modeled with a Mixture of Gaussians conditioned on the current observation and the next best action. Our use of mixture-of-posteriors prior effectively alleviates the issue of over-regularized latent space, thus significantly boosting the model generalization for new targets and in novel scenes. Moreover, the NEO generation models the forward dynamics of agent-environment interaction, which improves the quality of approximate inference and hence benefits data efficiency. We have conducted extensive evaluations on both real-world and synthetic benchmarks, and show that our model consistently outperforms the state-of-the-art models in terms of success rate, data efficiency, and generalization.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Lorenzo Zangari ◽  
Roberto Interdonato ◽  
Antonio Calió ◽  
Andrea Tagarelli

AbstractGraph Neural Networks (GNNs) are powerful tools that are nowadays reaching state of the art performances in a plethora of different tasks such as node classification, link prediction and graph classification. A challenging aspect in this context is to redefine basic deep learning operations, such as convolution, on graph-like structures, where nodes generally have unordered neighborhoods of varying size. State-of-the-art GNN approaches such as Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs) work on monoplex networks only, i.e., on networks modeling a single type of relation among an homogeneous set of nodes. The aim of this work is to generalize such approaches by proposing a GNN framework for representation learning and semi-supervised classification in multilayer networks with attributed entities, and arbitrary number of layers and intra-layer and inter-layer connections between nodes. We instantiate our framework with two new formulations of GAT and GCN models, namely and , specifically devised for general, attributed multilayer networks. The proposed approaches are evaluated on an entity classification task on nine widely used real-world network datasets coming from different domains and with different structural characteristics. Results show that both our proposed and methods provide effective and efficient solutions to the problem of entity classification in multilayer attributed networks, being faster to learn and offering better accuracy than the competitors. Furthermore, results show how our methods are able to take advantage of the presence of real attributes for the entities, in addition to arbitrary inter-layer connections between the nodes in the various layers.


Sign in / Sign up

Export Citation Format

Share Document