Precision agriculture: Challenges in sensors and electronics for real-time soil and plant monitoring

Author(s):  
Sophocleous Marios ◽  
Julius Georgiou
2021 ◽  
Vol 733 (1) ◽  
pp. 012026
Author(s):  
A Wijanarko ◽  
A P Nugroho ◽  
A I Kusumastuti ◽  
M A F Dzaky ◽  
R E Masithoh ◽  
...  

Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 131
Author(s):  
Stavros Alexandris ◽  
Emmanouil Psomiadis ◽  
Nikolaos Proutsos ◽  
Panos Philippopoulos ◽  
Ioannis Charalampopoulos ◽  
...  

Precision agriculture has been at the cutting edge of research during the recent decade, aiming to reduce water consumption and ensure sustainability in agriculture. The proposed methodology was based on the crop water stress index (CWSI) and was applied in Greece within the ongoing research project GreenWaterDrone. The innovative approach combines real spatial data, such as infrared canopy temperature, air temperature, air relative humidity, and thermal infrared image data, taken above the crop field using an aerial micrometeorological station (AMMS) and a thermal (IR) camera installed on an unmanned aerial vehicle (UAV). Following an initial calibration phase, where the ground micrometeorological station (GMMS) was installed in the crop, no equipment needed to be maintained in the field. Aerial and ground measurements were transferred in real time to sophisticated databases and applications over existing mobile networks for further processing and estimation of the actual water requirements of a specific crop at the field level, dynamically alerting/informing local farmers/agronomists of the irrigation necessity and additionally for potential risks concerning their fields. The supported services address farmers’, agricultural scientists’, and local stakeholders’ needs to conform to regional water management and sustainable agriculture policies. As preliminary results of this study, we present indicative original illustrations and data from applying the methodology to assess UAV functionality while aiming to evaluate and standardize all system processes.


Drones ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 71 ◽  
Author(s):  
Hanno Hildmann ◽  
Ernö Kovacs ◽  
Fabrice Saffre ◽  
A. F. Isakovic

Unmanned Aerial Vehicles (UAVs) with acceptable performance are becoming commercially available at an affordable cost. Due to this, the use of drones for real-time data collection is becoming common practice by individual practitioners in the areas of e.g., precision agriculture and civil defense such as fire fighting. At the same time, as UAVs become a house-hold item, a plethora of issues—which can no longer be ignored and considered niche problems—are coming of age. These range from legal and ethical questions to technical matters such as how to implement and operate a communication infrastructure to maintain control over deployed devices. With these issues being addressed, approaches that focus on enabling collectives of devices to operate semi-autonomously are also increasing in relevance. In this article we present a nature-inspired algorithm that enables a UAV-swarm to operate as a collective which provides real-time data such as video footage. The collective is able to autonomously adapt to changing resolution requirements for specific locations within the area under surveillance. Our distributed approach significantly reduces the requirements on the communication infrastructure and mitigates the computational cost otherwise incurred. In addition, if the UAVs themselves were to be equipped with even rudimentary data-analysis capabilities, the swarm could react in real-time to the data it generates and self-regulate which locations within its operational area it focuses on. The approach was tested in a swarm of 25 UAVs; we present out preliminary performance evaluation.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1508 ◽  
Author(s):  
Rafael González Perea ◽  
Aida Mérida García ◽  
Irene Fernández García ◽  
Emilio Camacho Poyato ◽  
Pilar Montesinos ◽  
...  

Climate change, water scarcity and higher energy requirements and electric tariff compromises the continuity of the irrigated agriculture. Precision agriculture (PA) or renewable energy sources which are based on communication and information technologies and a large amount of data are key to ensuring this economic activity and guaranteeing food security at the global level. Several works which are based on the use of PA and renewable energy sources have been developed in order to optimize different variables of irrigated agriculture such as irrigation scheduling. However, the large amount of technologies and sensors that these models need to be implemented are still far from being easily accessible and usable by farmers. In this way, a middleware called Real time Smart Solar Irrigation Manager (RESSIM) has been developed in this work and implemented in MATLABTM with the aim to provide to farmers a user-friendly tool for the daily making decision process of irrigation scheduling using a smart photovoltaic irrigation management module. RESSIM middleware was successfully tested in a real field during a full irrigation season of olive trees using a real smart photovoltaic irrigation system.


2011 ◽  
Vol 26 (7) ◽  
pp. 537-551 ◽  
Author(s):  
Xiaodong Zhang ◽  
Ho Jin Kim ◽  
Clinton Streeter ◽  
David A. Claypool ◽  
Ramesh Sivanpillai ◽  
...  

2021 ◽  
Author(s):  
Haoran Zhang ◽  
Xubing Wu ◽  
Jiaying Du ◽  
Song Wang ◽  
Hui Fang ◽  
...  

Abstract Responsive composites that can display sophisticated responses under environmental stimuli are of paramount importance for developing smart materials and systems. However, the hierarchical design of their multiscale constituents to achieve such response remains a challenge. Here, we report a responsive polymer composite obtained by integrating hierarchical interactions between the polymer network meshes, perovskite nanoinclusion, and a microstructured layout. More specific, a layered composite film has been made with perovskite nanoparticles embedded in a hydratable polymer network as the top layer. The perovskites inclusions can undergo a reversible transformation between a nanocrystalline state and a dissociated ion state, triggered by spraying aqueous solutions on the polymer top layer, resulting in an on/off switch of fluorescence at 510 nm. Meanwhile, the surface layer experiences a reconfigurable micro-wrinkling that can gradually change the film transmittance between 90% and 10%. The two orthogonal responses show a good reversibility for at least 15 cycles. They can be manipulated independently as they respond differently to the amount of water applied. We demonstrate the use of such film by real-time, quantitative, and repeatable detection of spraying and subsequent droplet distribution. Such a sensing capability is urgently needed in precision agriculture for fast assessing the deposition quality of pesticides and fertilizers, yet still not available. Our findings enable the design of perovskite-based responsive composites with multiple functions as well as novel device applications in sensors, actuators, and optoelectronics.


Author(s):  
Rana Gill

The agricultural sector is of great importance to fulfill food resources need of the country. Precision Agriculture (PA) with Internet of Things and Wireless Sensor Network is a transformation from traditional farming to smart farming. Wireless sensor networks and Internet of Things are considered as drivers to develop system which can change agriculture sector from manual to automatic. Advancement in the technology have pushed the growth of precision agriculture to very large extent despite of several challenges faced in this area. System for precision agriculture relies on hardware components mainly wireless sensors which act as a source for gathering of real time data. Depending upon the real time date retrieved by sensors automation in agriculture is done by adopting decision-based system. With Precision agriculture productivity is optimized by maintaining sustaniability as crop receives what is acutual requirement on the basis of new techniques and software platforms. This review article includes Inernet of Things (IoT), Wireless Sensors, Wireless communication and challenges faced in this area.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 924 ◽  
Author(s):  
Pietro Catania ◽  
Antonio Comparetti ◽  
Pierluigi Febo ◽  
Giuseppe Morello ◽  
Santo Orlando ◽  
...  

Global Navigation Satellite Systems (GNSS) allow the determination of the 3D position of a point on the Earth’s surface by measuring the distance from the receiver antenna to the orbital position of at least four satellites. Selecting and buying a GNSS receiver, depending on farm needs, is the first step for implementing precision agriculture. The aim of this work is to compare the positioning accuracy of four GNSS receivers, different for technical features and working modes: L1/L2 frequency survey-grade Real-Time Kinematic (RTK)-capable Stonex S7-G (S7); L1 frequency RTK-capable Stonex S5 (S5); L1 frequency Thales MobileMapper Pro (TMMP); low-cost L1 frequency Quanum GPS Logger V2 (QLV2). In order to evaluate the positioning accuracy of these receivers, i.e., the distance of the determined points from a reference trajectory, different tests, distinguished by the use or not of Real-Time Kinematic (RTK) differential correction data and/or an external antenna, were carried out. The results show that all satellite receivers tested carried out with the external antenna had an improvement in positioning accuracy. The Thales MobileMapper Pro satellite receiver showed the worst positioning accuracy. The low-cost Quanum GPS Logger V2 receiver surprisingly showed an average positioning error of only 0.550 m. The positioning accuracy of the above-mentioned receiver was slightly worse than that obtained using Stonex S7-G without the external antenna and differential correction (maximum positioning error 0.749 m). However, this accuracy was even better than that recorded using Stonex S5 without differential correction, both with and without the external antenna (average positioning error of 0.962 m and 1.368 m).


Sign in / Sign up

Export Citation Format

Share Document