Biomechanical analysis of large segmental bone repair with different fixation apparatuses

Author(s):  
Zhijian Su ◽  
Zhongzhong Chen ◽  
Zheng Wei ◽  
Zhenhong Xia
1998 ◽  
Vol 23 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Matthew J. Silva ◽  
Steven B. Hollstien ◽  
Michael D. Brodt ◽  
Martin I. Boyer ◽  
A. Marc Tetro ◽  
...  

Introduction. Bone repair after periprosthetic fracture is a critical issue in orthopedics. Objectives. So there is a need for research to provide new medical solutions, especially in the context of population ageing in the Ukraine. The importance of biomechanics which is concerned with the application of principles, concepts and methods of mechanics of solid and fluid to the human body in motion and at rest is well recognized as a foundation for further experimental and theoretical research in the skeletal tissues. Materials and methods. Different aspects of biomechanics require different concepts and methods of mechanics of solid and fluid to be used. Remodeling occurs significantly throughout lifetime of bone that is why it can be regarded as a primary determinant of the mechanical properties of bone and implant. Biomechanical analysis given in this review has been concerned with understanding on how mechanical signals and molecular mechanisms affect the healing of Vancouver periprosthetic femoral fracture of B1 and C-type with the use of internal fixation through a less invasive stabilization system (LISS)-plate, which is screwed into the artificial hip joint. Results. Identification of such parameters as mechanical properties of bone, titanium alloys (hip prosthesis, coating, LISS-plate, screws) and implant/biomaterial interface with bone under mechanical and biochemical loading that are very essential for predicting arthroplasty outcomes were investigated experimentally considering elastoplastic deformation, creep, fatigue and ratcheting, as well as, damage development in materials under discussion. Among the basic deformation features were tension-compression asymmetry, anisotropy and heterogeneity of mechanical properties. We used the three-dimensional finite element model derived from the reconstruction of treatment and magnetic resonance (tomographic) images. Conclusions. As a result of this model analysis, it was found that treatment rate of periprosthetic femoral fractures after total hip arthroplasty with the use of LISS-plates and screws for internal fixation may be controlled by means of ABAQUS (or ANSYS) software package to reproduce the characteristic features of bone and implant in bone reconstruction in order to improve the fracture healing rate and shorten treatment duration Introduction. Bone repair after periprosthetic fracture is a critical issue in orthopedics. Objectives. So there is a need for research to provide new medical solutions, especially in the context of population ageing in the Ukraine. The importance of biomechanics which is concerned with the application of principles, concepts and methods of mechanics of solid and fluid to the human body in motion and at rest is well recognized as a foundation for further experimental and theoretical research in the skeletal tissues. Materials and methods. Different aspects of biomechanics require different concepts and methods of mechanics of solid and fluid to be used. Remodeling occurs significantly throughout lifetime of bone that is why it can be regarded as a primary determinant of the mechanical properties of bone and implant. Biomechanical analysis given in this review has been concerned with understanding on how mechanical signals and molecular mechanisms affect the healing of Vancouver periprosthetic femoral fracture of B1 and C-type with the use of internal fixation through a less invasive stabilization system (LISS)-plate, which is screwed into the artificial hip joint. Results. Identification of such parameters as mechanical properties of bone, titanium alloys (hip prosthesis, coating, LISS-plate, screws) and implant/biomaterial interface with bone under mechanical and biochemical loading that are very essential for predicting arthroplasty outcomes were investigated experimentally considering elastoplastic deformation, creep, fatigue and ratcheting, as well as, damage development in materials under discussion. Among the basic deformation features were tension-compression asymmetry, anisotropy and heterogeneity of mechanical properties. We used the three-dimensional finite element model derived from the reconstruction of treatment and magnetic resonance (tomographic) images. Conclusions. As a result of this model analysis, it was found that treatment rate of periprosthetic femoral fractures after total hip arthroplasty with the use of LISS-plates and screws for internal fixation may be controlled by means of ABAQUS (or ANSYS) software package to reproduce the characteristic features of bone and implant in bone reconstruction in order to improve the fracture healing rate and shorten treatment duration.


RSC Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 7289-7300
Author(s):  
Zekang Xiong ◽  
Wei Cui ◽  
Tingfang Sun ◽  
Yu Teng ◽  
Yanzhen Qu ◽  
...  

Sustained delivery of PlGF-2123-144*-fused BMP2-related peptide P28 from SIS/PLA scaffold facilitate the adhesion, proliferation, and osteogenic differentiation of bone marrow stromal cells. This system effectively promotes segmental bone repair.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Li ◽  
Zeyu Huang ◽  
Bohua Li ◽  
Zhengdong Zhang ◽  
Lei Liu

Reconstruction of segmental bone defects poses a tremendous challenge for both orthopedic clinicians and scientists, since bone rehabilitation is requisite substantially and may be beyond the capacity of self-healing. Bone marrow mesenchymal stem cells (BMSCs) have been identified as an optimal progenitor cell source to facilitate bone repair since they have a higher ability for proliferation and are more easily accessible than mature osteoblastic cells. In spite of the potential of BMSCs in regeneration medicine, particularly for bone reconstruction, noteworthy limitations still remain in previous application of BMSCs, including the amount of cells that could be recruited, the compromised bone migration of grafted cells, reduced proliferation and osteoblastic differentiation ability, and likely tumorigenesis. Our current work demonstrates that BMSCs transplanted through the caudal vein can be mobilized by erythropoietin (EPO) to the bone defect area and participate in regeneration of new bone. Based on the histological analysis and micro-CT findings of this study, EPO can dramatically promote the effects on the osteogenesis and angiogenesis efficiency of BMSCs in vivo. Animals that underwent EPO+BMSC administration demonstrated a remarkable increase in new bone formation, tissue structure organization, new vessel density, callus formation, and bone mineral density (BMD) compared with the BMSCs alone and control groups. At the biomechanical level, we demonstrated that combing transplantation of EPO and BMSCs enhances bone defect reconstruction by increasing the strength of the diaphysis, making it less fragile. Therefore, combination therapy using EPO infusion and BMSC transplantation may be a new therapeutic strategy for the reconstruction of segmental bone defect.


2005 ◽  
Vol 30 (2) ◽  
pp. 258-266 ◽  
Author(s):  
Thomas T. Dovan ◽  
Richard H. Gelberman ◽  
Nozomu Kusano ◽  
Melissa Calcaterra ◽  
Matthew J. Silva

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Zhen Shen ◽  
Zehua Chen ◽  
Xiaodong Shi ◽  
Tao Wang ◽  
Minling Huang ◽  
...  

Tonifying kidney therapy consisting of tonifying kidney yang and yin is the basic principle of Chinese medicine in treating segmental bone defects (SBDs). Previous studies have demonstrated the presence of the differences between tonifying kidney yang and yin in bone metabolism of osteoporosis and distraction osteogenesis models. However, whether the difference between the two tonifying kidney methods in bone repair for the induced membrane (IM) technique occurs or what is the difference remain unclear. Angiogeneic-osteogenic coupling plays an important role in bone repair and the induced membrane couples angiogenesis with the later osteogenesis during the IM process. This study aimed at investigating the effects of tonifying kidney yang (total flavonoids of Rhizoma Drynariae, TFRD) and yin (plastrum testudinis extract, PTE) on angiogenesis and osteogenesis in the IM-treated SBDs. Rats of 6 mm tibia bone defect model treated with IM were divided into five groups: the control group, the model group, the tonifying kidney yang group (TFRD-treated group), the tonifying kidney yin group (PTE-treated group), and the western medicine group. At 4 weeks after insertion of the polymethylmethacrylate (PMMA), three caudal vertebrae from the tail in each rat were implanted into the 6 mm defect gap. Radiographical, histological, immunohistochemical, and immunofluorescent analyses were performed to assess bone and vessel formation at 4 or 12 weeks after insertion of the PMMA, respectively. Our results revealed that TFRD and PTE were beneficial to both angiogenesis and osteogenesis. TFRD exerted a better effect on angiogenesis than PTE and achieved a better result in stage 1 rather than in stage 2 of IM, whereas PTE was superior to TFRD in osteogenesis and achieved a better result in stage 2 instead of stage 1. Collectively, these findings elucidated the beneficial effects of tonifying kidney yang and yin on angiogenesis and osteogenesis of SBD repair during the IM process, as well as the difference that tonifying kidney yang surpasses tonifying kidney yin in angiogenesis while tonifying kidney yin outperforms tonifying kidney yang in osteogenesis, which suggests that the combination between the application of tonifying kidney yang method in stage 1 of IM and tonifying kidney yin method in stage 2 may achieve better repair efficiency.


Biomaterials ◽  
2000 ◽  
Vol 21 (11) ◽  
pp. 1145-1153 ◽  
Author(s):  
Carsten Perka ◽  
Olaf Schultz ◽  
Ron-Sascha Spitzer ◽  
Klaus Lindenhayn ◽  
Gerd-R Burmester ◽  
...  

2019 ◽  
Author(s):  
Brett S. Klosterhoff ◽  
Jarred Kaiser ◽  
Bradley D. Nelson ◽  
Salil S. Karipott ◽  
Marissa A. Ruehle ◽  
...  

AbstractMechanical loads exerted on the skeleton during activities such as walking are important regulators of bone repair, but dynamic biomechanical signals are difficult to measure inside the body. The inability to measure the mechanical environment in injured tissues is a significant barrier to developing integrative regenerative and rehabilitative strategies that can accelerate recovery from fracture, segmental bone loss, and spinal fusion. Here we engineered an implantable strain sensor platform and measured strain across a bone defect in real-time throughout rehabilitation. We used the sensor to longitudinally quantify mechanical cues imparted by a load-sharing fixation plate that significantly enhanced bone regeneration in rats. We found that sensor readings correlated with the status of healing, suggesting a potential role for strain sensing as an X-ray-free healing assessment platform. This study demonstrates a promising approach to quantitatively develop and exploit mechanical rehabilitation strategies that enhance bone repair.


2019 ◽  
Vol 5 (8) ◽  
pp. eaax6946 ◽  
Author(s):  
Kun Zhang ◽  
Yong Zhou ◽  
Cong Xiao ◽  
Wanlu Zhao ◽  
Hongfeng Wu ◽  
...  

Hydroxyapatite (HA) has been widely applied in bone repair because of its superior biocompatibility. Recently, a proliferation-suppressive effect of HA nanoparticles (n-HA) against various cancer cells was reported. This study was aimed at assessing the translational value of n-HA both as a bone-regenerating material and as an antitumor agent. Inhibition of tumor growth, prevention of metastasis, and enhancement of the survival rate of tumor-bearing rabbits treated with n-HA were demonstrated. Activated mitochondrial-dependent apoptosis in vivo was confirmed, and we observed that a stimulated immune response was involved in the n-HA–induced antitumor effect. A porous titanium scaffold loaded with n-HA was fabricated and implanted into a critical-sized segmental bone defect in a rabbit tumor model. The n-HA–releasing scaffold not only showed a prominent effect in suppressing tumor growth and osteolytic lesion but also promoted bone regeneration. These findings provide a rationale for using n-HA in tumor-associated bone segmental defects.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Mohamed N. Rahaman ◽  
Wei Xiao ◽  
Wenhai Huang

AbstractBioactive glass particles andweak scaffolds have been used to heal small contained bone defects but an unmet challenge is the development of bioactive glass implants with the requisite mechanical reliability and in vivo performance to heal structural bone defects. Inadequate mechanical strength and a brittle mechanical response have been key concerns in the use of bioactive glass scaffolds in structural bone repair. Recent research has shown the capacity to create strong porous bioactive glass scaffolds and the ability of these scaffolds to heal segmental bone defects in small and large rodents at a rate comparable to autogenous bone grafts. Loading these strong porous scaffolds with bone morphogenetic protein-2 can significantly enhance their ability to regenerate bone. Recentwork has also shown that coating the external surface of strong porous scaffolds with an adherent biodegradable polymer can dramatically improve their load-bearing capacity in flexural loading and their work of fracture (a measure of toughness). These tough and strong bioactive glass-polymer composites with an internal architecture conducive to bone infiltration could provide optimal synthetic implants for structural bone repair.


Sign in / Sign up

Export Citation Format

Share Document