Study on The Paschen Curve of Air Discharge under Repetitive Pulse Voltage

Author(s):  
Shimin Zhang ◽  
Biqing Chen ◽  
Lixia Gao ◽  
Tongtong Xiong ◽  
Chan Du ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Masafumi Fukunari ◽  
Shunsuke Tanaka ◽  
Ryuji Shinbayashi ◽  
Yuusuke Yamaguchi ◽  
Yoshinori Tatematsu ◽  
...  

AbstractGas breakdown in the millimetre-wave frequency band is an interesting phenomenon in nonlinear dynamics such as self-organized structure formation. We observed the transition between two types of filamentary plasma arrays in air discharge driven by a 303-GHz millimetre wave. Plasma is ignited at a parabolic mirror’s focal point in the overcritical condition. One array parallel to the electric field vector appears with a spacing of λ/4 at the focal point. Filaments then separate into plasma lumps ~10 μs after ignition. At 20 μs, a new comb-shaped array grows in the subcritical condition. Filaments are parallel to the incident beam with spacing of 0.96 λ and elongate towards the incident beam. This comb-shaped array appears only in the electric field plane; bulk plasma with a sharp vertex forms in the magnetic field plane. This array is created by a standing wave structure generated by waves diffracted from the plasma surface. Filamentary plasma array formations can influence the energy absorption by the plasma, which is important for engineering applications such as beamed energy propulsion.


Author(s):  
Mengdie Liu ◽  
Hui Tang ◽  
Huiwen Jiang ◽  
Jie Li ◽  
Shoulei Yan ◽  
...  

1982 ◽  
Vol 80 (5) ◽  
pp. 663-682 ◽  
Author(s):  
C M Armstrong ◽  
R P Swenson ◽  
S R Taylor

We have studied the interactions of Ba ion with K channels. Ba2+ blocks these channels when applied either internally or externally in millimolar concentrations. Periodic depolarizations enhance block with internal Ba2+, but diminish the block caused by external Ba2+. At rest, dissociation of Ba2+ from blocked channels is very slow, as ascertained by infrequent test pulses applied after washing Ba2+ form either inside or outside. The time constant for recovery from internal and external Ba2+ is the same. Frequent pulsing greatly shortens recovery time constant after washing away both Ba2+in and Ba2+out. Block by Ba2+ applied internally or externally is voltage dependent. Internal Ba2+ block behaves like a one-step reaction governed by a dissociation constant (Kd) that decreases e-fold/12 mV increase of pulse voltage: block deepens with more positive pulse voltage. For external Ba2+, Kd decreases e-fold/18 mV as holding potential is made more negative: block deepens with increasing negativity. Millimolar external concentrations of some cations can either lessen (K+) or enhance (NH+4, Cs+) block by external Ba2+. NH+4 apparently enhances block by slowing exist of Ba ions from the channels. Rb+ and Cs+ also slow clearing of Ba ions from channels. We think that (a) internally applied Ba2+ moves all the way through the channels, entering only when activation gates are open; (b) externally applied Ba2+ moves two-thirds of the way in, entering predominantly when activation gates are closed; (c) at a given voltage, Ba2+ occupies the same position in the channels whether it entered from inside or outside.


Author(s):  
Zhi-Jie Liu ◽  
Wen-Chun Wang ◽  
De-Zheng Yang ◽  
Sen Wang ◽  
Shuai Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document