Enhancing the Microstrip Antenna Gain Using a Novel EBG Lens Based on a Single Layer

Author(s):  
Yahiea Alnaiemy ◽  
Taha A. Elwi ◽  
Nagy Lajos
2014 ◽  
Vol 685 ◽  
pp. 314-319
Author(s):  
Hong Yang ◽  
Dan Liu ◽  
Wei Chen

Based on the magnetic materials (JV-5) substrate, Double L-shaped slot microstrip antenna is designed. The bandwidth is over 2 times that of the normal substrate and a 40% reduction in size happens.. On this basis, the microstrip antenna with magnetic substrate EBG structure is designed and the EBG structure uses the corrosive effects of joint floor, namely getting periodic H-shaped and circular structures by the floor corrosion, and performing a simulation with HFSS14.0. The results show that the EBG structure of magnetic material having a prominent advantage of the miniaturization and bandwidth-broaden compared to a microstrip antenna with non-magnetic materials substrate, resulting in more than 10% relative bandwidth and a slight gain loss. To some degree, introducing EBG structure can reduce the size of the antenna and increase its bandwidth, and it also improve the gain and radiation characteristics of the antenna.Key words: EBG structure; magnetic material;Double L-shaped slot microstrip antenna; gain


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Sahar Chagharvand ◽  
M. R. B. Hamid ◽  
M. R. Kamarudin ◽  
Mohsen Khalily

This paper presents a single layer planar slot antenna for dual band operation. The antenna is fed by a coplanar waveguide (CPW) with two inverted C-shaped resonators to achieve the dual band operation. The impedance bandwidth for ǀS11ǀ < -10dB is 14% in lower band and 7% in higher band. The antenna prototype’s electromagnetic performance, impedance bandwidth, radiation pattern, and antenna gain were measured. The proposed configuration offers a relatively compact, easy to fabricate and dual band performance providing gain between 2 and 4 dBi. The designed antenna has good dual bandwidth covering 3.5 WiMAX and 5.8 WLAN tasks. Experimental and numerical results also showed good agreement after comparison.


2019 ◽  
Vol 8 (3) ◽  
pp. 1-5 ◽  
Author(s):  
A. S. Boughrara ◽  
S. Benkouda ◽  
A. Bouraiou ◽  
T. Fortaki

In this paper, we present a rigorous full-wave analysis able to estimate exactly the resonant characteristics of stacked high Tc superconducting circular disk microstrip antenna. The superconducting patches are assumed to be embedded in a multilayered substrate containing isotropic and/or uniaxial anisotropic materials (the analysis is valid for an arbitrary number of layers). London’s equations and the two-fluid model of Gorter and Casimir are used in the calculation of the complex surface impedance of the superconducting circular disks. Numerical results are presented for a single layer structure as well as for two stacked circular disks fabricated on a double-layered substrate.


2021 ◽  
Vol 10 (4) ◽  
pp. 2055-2061
Author(s):  
Rasha Mahdi Salih ◽  
Ali Khalid Jassim

This work builds a metamaterial (MTM) superstrate loaded on a patch of microstrip antenna for wireless communications. The MTM superstrate is made up of four G-shaped resonators on FR-4 substrate with a relative permittivity of 4.4 and has a total area of (8×16) mm2, and is higher than the patch. The MTM superstrate increases antenna gain while also raising the input reflection coefficient. When it is 9 mm above the patch, the gain increased from 3.28 dB to 6.02 dB, and when it is 7 mm above the patch, the input reflection coefficient was enhanced from -31.217 dB to -45.8 dB. When the MTM superstrate loaded antenna was compared to the traditional unloaded antenna, it was discovered that metamaterials have a lot of potential for improving antenna performance.


2012 ◽  
Vol 2012 (1) ◽  
pp. 001078-001080
Author(s):  
Deepukumar Nair ◽  
Glenn Oliver ◽  
Jim Parisi

Organic coverlays are required to protect microstrip circuits in most applications. The presence of coverlay can potentially influence the performance of microstrip antennas. This paper describes the qualification of polyimide based coverlays for microstrip antennas both in 900 MHz and 2.50 GHz frequency bands. An Inverted F-shaped antenna fabricated on FR-4 dielectric is used as the test vehicle and two different coverlay materials are tested with respect to key parameters like resonant frequency, S11 bandwidth, antenna gain, frequency detuning, and radiation pattern. The data presented in this paper clearly indicates polyimide materials are well suited to cover microstrip antenna circuits with minimal impact on performance.


2020 ◽  
Vol 12 (9) ◽  
pp. 906-914
Author(s):  
O. Borazjani ◽  
M. Naser-Moghadasi ◽  
J. Rashed-Mohassel ◽  
R. A. Sadeghzadeh

AbstractTo prevent far-field radiation characteristics degradation while increasing bandwidth, an attempt has been made to design and fabricate a microstrip antenna. An electromagnetic band gap (EBG) structure, including a layer of a metallic ring on a layer of Rogers 4003C substrate, is used. For a better design, a patch antenna with and without the EBG substrate has been simulated. The results show that the bandwidth can be improved up to 1.6 GHz in X-band by adding the EBG substrate. Furthermore, using this structure, a dual-band antenna was obtained as well. Finally, to validate the simulation results, a comparison has been done between simulation data and experimental results which demonstrate good agreement.


2018 ◽  
Vol 7 (1) ◽  
pp. 57 ◽  
Author(s):  
Kalyan Rayavaram ◽  
K.T.V Reddy ◽  
Padma Priya Kesari

In this paper, the design and simulation of a compact ultra-wide band (UWB) microstrip antenna with quadruple band-notched characteristics for short-distance wireless telecommunication applications were explored. The design process of the antenna is carried on FR4 substrate with dielectric constant 4.4, loss tangent 0.02, thickness of 0. 8mm and the size of the proposed antenna are 30×20 mm2. The rectangular monopole antenna endures a rectangular radiating patch with chamfered bevel slots on the top side, and a defective ground planed on the bottom side of the substrate. To realize single, dual, triple and quadruple band notch characteristics, slot-1 is created on the patch to achieve first notch at 3.5 GHz, which eliminates WIMAX signal, slot-2 is created on the patch to achieve second notch at 4.6 GHz, which eliminates INSAT signal, slot-3 is created on the patch to achieve third notch at 5.5 GHz, which eliminates WLAN signal and also fourth notch is created at 9.5GHz which eliminates X-band frequency with slot-1 outer length. The proposed antenna is well miniaturized and can be easily integrated with any compact devices. The simulated result shows that proposed antenna gain a good range of UWB from (2.6 GHz to 13.4 GHz).


1999 ◽  
Vol 35 (16) ◽  
pp. 1292 ◽  
Author(s):  
M. Clenet ◽  
L. Shafai

Sign in / Sign up

Export Citation Format

Share Document