Design and Implementation of Energy Efficient Node Data Transmission by Using Mobile Sink Node

Author(s):  
Shweta P. Palaskar ◽  
Nekita A. Chavhan
Sensors ◽  
2009 ◽  
Vol 9 (2) ◽  
pp. 696-716 ◽  
Author(s):  
Suhinthan Maheswararajah ◽  
Saman Halgamuge ◽  
Malin Premaratne

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Youngtae Jo

To effectively transfer sensing data to a sink node, system designers should consider the characteristic of wireless sensor networks in the way of data transmission. In particular, sensor nodes surrounding a fixed sink node have routinely suffered from concentrated network traffic so that their battery energy is rapidly exhausted. The lifetime of wireless sensor networks decreases due to the rapid power consumption of these sensor nodes. To address the problem, a mobile sink model has recently been chosen for traffic load distribution among sensor nodes. However, since a mobile sink continuously changes its location in sensor networks, it has a time limitation to communicate with each sensor node and unstable signal strength from each sensor node. Therefore, fair and stable data collection policy between a mobile sink and sensor nodes is necessary in this circumstance. In this paper, we propose a new scheduling policy to support fair and stable data collection for a mobile sink in wireless sensor networks. The proposed policy performs data collection scheduling based on the communication availability of data transmission between sensor nodes and a mobile sink.


2011 ◽  
Vol 216 ◽  
pp. 621-624
Author(s):  
Xin Lian Zhou ◽  
Jian Bo Xu

This paper first proposed an energy-efficient distributed clustering technology for mobile sensor nodes and sink node mobility, select the higher residual energy and the nearest node from fixed nodes as cluster heads responsible for collecting sensed data, and all the fixed nodes form routing backbone to forward data, both can save energy and avoid cluster head away. Then, proposed a cross-layer scheduling mechanism to avoid the impact of mobile node and meet expectations cluster coverage. With energy-efficient clustering technology, efficient network topology control technology and mobile sink node, the data collection algorithm MSDBG, not only has considered mobility of nodes and energy saving, but also has achieved prolonging network lifetime.


Author(s):  
Rinkuben N. Patel ◽  
Nirav V. Bhatt

Background: WSN is a network of smart tiny electromechanical devices named as sensors. Sensors perform various tasks like sensing the environment as per its range, transmit the data using transmission units, store the data in the storage unit and perform an action based on captured data. As they are installed in an unfriendly environment, to recharge the sensors are not possible every time which leads to a limited lifetime of a network. To enhance the life of a sensor network, the network required energy-efficient protocols. Various energy-efficient MAC protocols are developed by Research community, but very few of them are integrated with the priority-based environment which performs the priority-based data transmission. Another challenge of WSN is, most of the WSN areas are delay-sensitive because it is implemented in critical fields like military, disaster management, and health monitoring. Energy, Delay, and throughput are major quality factors that affect the sensor network. Objective: In this paper, the aim is to design and develop a MAC Protocol for a field like the military where the system requires energy efficiency and priority-based data transmission. Method: In the proposed model, the cluster-based network with priority queues are formed that can achieve higher power efficiency and less delay for sensitive data. Results: In this research simulation of Proposed MAC, TMAC and SMAC are done with different numbers of nodes, same inter-packet intervals, and variant inter-packet intervals. Based on the script simulation, result graphs are generated. Conclusion: The proposed work achieves greater lifetime compared to TMAC and SMAC using priority-based data transmission.


Author(s):  
Amandeep Kaur Sohal ◽  
Ajay Kumar Sharma ◽  
Neetu Sood

Background: An information gathering is a typical and important task in agriculture monitoring and military surveillance. In these applications, minimization of energy consumption and maximization of network lifetime have prime importance for green computing. As wireless sensor networks comprise of a large number of sensors with limited battery power and deployed at remote geographical locations for monitoring physical events, therefore it is imperative to have minimum consumption of energy during network coverage. The WSNs help in accurate monitoring of remote environment by collecting data intelligently from the individual sensors. Objective: The paper is motivated from green computing aspect of wireless sensor network and an Energy-efficient Weight-based Coverage Enhancing protocol using Genetic Algorithm (WCEGA) is presented. The WCEGA is designed to achieve continuously monitoring of remote areas for a longer time with least power consumption. Method: The cluster-based algorithm consists two phases: cluster formation and data transmission. In cluster formation, selection of cluster heads and cluster members areas based on energy and coverage efficient parameters. The governing parameters are residual energy, overlapping degree, node density and neighbor’s degree. The data transmission between CHs and sink is based on well-known evolution search algorithm i.e. Genetic Algorithm. Conclusion: The results of WCEGA are compared with other established protocols and shows significant improvement of full coverage and lifetime approximately 40% and 45% respectively.


Sign in / Sign up

Export Citation Format

Share Document