Deep Convolutional Neural Network based Feature Extraction with optimized Machine Learning Classifier in Infant Cry Classification

Author(s):  
Ashwini K ◽  
Durai Raj Vincent P M ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang
2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2021 ◽  
pp. 1-10
Author(s):  
Chien-Cheng Leea ◽  
Zhongjian Gao ◽  
Xiu-Chi Huanga

This paper proposes a Wi-Fi-based indoor human detection system using a deep convolutional neural network. The system detects different human states in various situations, including different environments and propagation paths. The main improvements proposed by the system is that there is no cameras overhead and no sensors are mounted. This system captures useful amplitude information from the channel state information and converts this information into an image-like two-dimensional matrix. Next, the two-dimensional matrix is used as an input to a deep convolutional neural network (CNN) to distinguish human states. In this work, a deep residual network (ResNet) architecture is used to perform human state classification with hierarchical topological feature extraction. Several combinations of datasets for different environments and propagation paths are used in this study. ResNet’s powerful inference simplifies feature extraction and improves the accuracy of human state classification. The experimental results show that the fine-tuned ResNet-18 model has good performance in indoor human detection, including people not present, people still, and people moving. Compared with traditional machine learning using handcrafted features, this method is simple and effective.


Author(s):  
Satoru Tsuiki ◽  
Takuya Nagaoka ◽  
Tatsuya Fukuda ◽  
Yuki Sakamoto ◽  
Fernanda R. Almeida ◽  
...  

Abstract Purpose In 2-dimensional lateral cephalometric radiographs, patients with severe obstructive sleep apnea (OSA) exhibit a more crowded oropharynx in comparison with non-OSA. We tested the hypothesis that machine learning, an application of artificial intelligence (AI), could be used to detect patients with severe OSA based on 2-dimensional images. Methods A deep convolutional neural network was developed (n = 1258; 90%) and tested (n = 131; 10%) using data from 1389 (100%) lateral cephalometric radiographs obtained from individuals diagnosed with severe OSA (n = 867; apnea hypopnea index > 30 events/h sleep) or non-OSA (n = 522; apnea hypopnea index < 5 events/h sleep) at a single center for sleep disorders. Three kinds of data sets were prepared by changing the area of interest using a single image: the original image without any modification (full image), an image containing a facial profile, upper airway, and craniofacial soft/hard tissues (main region), and an image containing part of the occipital region (head only). A radiologist also performed a conventional manual cephalometric analysis of the full image for comparison. Results The sensitivity/specificity was 0.87/0.82 for full image, 0.88/0.75 for main region, 0.71/0.63 for head only, and 0.54/0.80 for the manual analysis. The area under the receiver-operating characteristic curve was the highest for main region 0.92, for full image 0.89, for head only 0.70, and for manual cephalometric analysis 0.75. Conclusions A deep convolutional neural network identified individuals with severe OSA with high accuracy. Future research on this concept using AI and images can be further encouraged when discussing triage of OSA.


2021 ◽  
Vol 21 (01) ◽  
pp. 2150005
Author(s):  
ARUN T NAIR ◽  
K. MUTHUVEL

Nowadays, analysis on retinal image exists as one of the challenging area for study. Numerous retinal diseases could be recognized by analyzing the variations taking place in retina. However, the main disadvantage among those studies is that, they do not have higher recognition accuracy. The proposed framework includes four phases namely, (i) Blood Vessel Segmentation (ii) Feature Extraction (iii) Optimal Feature Selection and (iv) Classification. Initially, the input fundus image is subjected to blood vessel segmentation from which two binary thresholded images (one from High Pass Filter (HPF) and other from top-hat reconstruction) are acquired. These two images are differentiated and the areas that are common to both are said to be the major vessels and the left over regions are fused to form vessel sub-image. These vessel sub-images are classified with Gaussian Mixture Model (GMM) classifier and the resultant is summed up with the major vessels to form the segmented blood vessels. The segmented images are subjected to feature extraction process, where the features like proposed Local Binary Pattern (LBP), Gray-Level Co-Occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRM) are extracted. As the curse of dimensionality seems to be the greatest issue, it is important to select the appropriate features from the extracted one for classification. In this paper, a new improved optimization algorithm Moth Flame with New Distance Formulation (MF-NDF) is introduced for selecting the optimal features. Finally, the selected optimal features are subjected to Deep Convolutional Neural Network (DCNN) model for classification. Further, in order to make the precise diagnosis, the weights of DCNN are optimally tuned by the same optimization algorithm. The performance of the proposed algorithm will be compared against the conventional algorithms in terms of positive and negative measures.


Author(s):  
Saranya N ◽  
◽  
Kavi Priya S ◽  

In recent years, due to the increasing amounts of data gathered from the medical area, the Internet of Things are majorly developed. But the data gathered are of high volume, velocity, and variety. In the proposed work the heart disease is predicted using wearable devices. To analyze the data efficiently and effectively, Deep Canonical Neural Network Feed-Forward and Back Propagation (DCNN-FBP) algorithm is used. The data are gathered from wearable gadgets and preprocessed by employing normalization. The processed features are analyzed using a deep convolutional neural network. The DCNN-FBP algorithm is exercised by applying forward and backward propagation algorithm. Batch size, epochs, learning rate, activation function, and optimizer are the parameters used in DCNN-FBP. The datasets are taken from the UCI machine learning repository. The performance measures such as accuracy, specificity, sensitivity, and precision are used to validate the performance. From the results, the model attains 89% accuracy. Finally, the outcomes are juxtaposed with the traditional machine learning algorithms to illustrate that the DCNN-FBP model attained higher accuracy.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 256 ◽  
Author(s):  
Jiangyong An ◽  
Wanyi Li ◽  
Maosong Li ◽  
Sanrong Cui ◽  
Huanran Yue

Drought stress seriously affects crop growth, development, and grain production. Existing machine learning methods have achieved great progress in drought stress detection and diagnosis. However, such methods are based on a hand-crafted feature extraction process, and the accuracy has much room to improve. In this paper, we propose the use of a deep convolutional neural network (DCNN) to identify and classify maize drought stress. Field drought stress experiments were conducted in 2014. The experiment was divided into three treatments: optimum moisture, light drought, and moderate drought stress. Maize images were obtained every two hours throughout the whole day by digital cameras. In order to compare the accuracy of DCNN, a comparative experiment was conducted using traditional machine learning on the same dataset. The experimental results demonstrated an impressive performance of the proposed method. For the total dataset, the accuracy of the identification and classification of drought stress was 98.14% and 95.95%, respectively. High accuracy was also achieved on the sub-datasets of the seedling and jointing stages. The identification and classification accuracy levels of the color images were higher than those of the gray images. Furthermore, the comparison experiments on the same dataset demonstrated that DCNN achieved a better performance than the traditional machine learning method (Gradient Boosting Decision Tree GBDT). Overall, our proposed deep learning-based approach is a very promising method for field maize drought identification and classification based on digital images.


2020 ◽  
Vol 64 (2) ◽  
pp. 20507-1-20507-10 ◽  
Author(s):  
Hee-Jin Yu ◽  
Chang-Hwan Son ◽  
Dong Hyuk Lee

Abstract Traditional approaches for the identification of leaf diseases involve the use of handcrafted features such as colors and textures for feature extraction. Therefore, these approaches may have limitations in extracting abundant and discriminative features. Although deep learning approaches have been recently introduced to overcome the shortcomings of traditional approaches, existing deep learning models such as VGG and ResNet have been used in these approaches. This indicates that the approach can be further improved to increase the discriminative power because the spatial attention mechanism to predict the background and spot areas (i.e., local areas with leaf diseases) has not been considered. Therefore, a new deep learning architecture, which is hereafter referred to as region-of-interest-aware deep convolutional neural network (ROI-aware DCNN), is proposed to make deep features more discriminative and increase classification performance. The primary idea is that leaf disease symptoms appear in leaf area, whereas the background region does not contain useful information regarding leaf diseases. To realize this, two subnetworks are designed. One subnetwork is the ROI subnetwork to provide more discriminative features from the background, leaf areas, and spot areas in the feature map. The other subnetwork is the classification subnetwork to increase the classification accuracy. To train the ROI-aware DCNN, the ROI subnetwork is first learned with a new image set containing the ground truth images where the background, leaf area, and spot area are divided. Subsequently, the entire network is trained in an end-to-end manner to connect the ROI subnetwork with the classification subnetwork through a concatenation layer. The experimental results confirm that the proposed ROI-aware DCNN can increase the discriminative power by predicting the areas in the feature map that are more important for leaf diseases identification. The results prove that the proposed method surpasses conventional state-of-the-art methods such as VGG, ResNet, SqueezeNet, bilinear model, and multiscale-based deep feature extraction and pooling.


Author(s):  
Aires Da Conceicao ◽  
Sheshang D. Degadwala

Self-driving vehicle is a vehicle that can drive by itself it means without human interaction. This system shows how the computer can learn and the over the art of driving using machine learning techniques. This technique includes line lane tracker, robust feature extraction and convolutional neural network.


Sign in / Sign up

Export Citation Format

Share Document