Novel 1 kv, normally-off, vertically integrated, dual-gate VJFET power switch with a low 4.6 mωcm2 on-state resistance

Author(s):  
B. Nechay ◽  
E. Stewart ◽  
V. Veliadis ◽  
T. McNutt ◽  
H. Hearne ◽  
...  
2018 ◽  
Vol 27 (12) ◽  
pp. 1850188 ◽  
Author(s):  
Hossein Ajdar Faeghi Bonab ◽  
Mohamad Reza Banaei ◽  
Navid Taghizadegan Kalantari

In this paper, a new transformerless buck–boost converter is introduced. The proposed converter voltage gain is higher that of the conventional buck–boost converter. In the presented converter, only one power switch is used. The switch voltage stress is low, therefore, the low on-state resistance of the power switch can be selected to decrease losses of the switch. The presented converter topology is simple, hence the control of the converter will be simple. The mathematical analyses and principle of the proposed converter are explained. The validity of the proposed converter is confirmed by the experimental results.


2008 ◽  
Vol 600-603 ◽  
pp. 1067-1070 ◽  
Author(s):  
Rajesh Kumar Malhan ◽  
S.J. Rashid ◽  
Mitsuhiro Kataoka ◽  
Yuuichi Takeuchi ◽  
Naohiro Sugiyama ◽  
...  

Static and dynamic behavior of the epitaxially grown dual gate trench 4H-SiC junction field effect transistor (JFET) is investigated. Typical on-state resistance Ron was 6 – 10mΩcm2 at VGS = 2.5V and the breakdown voltage between the range of 1.5 – 1.8kV was realized at VGS = −5V for normally-off like JFETs. It was found that the turn-on energy delivers the biggest part of the switching losses. The dependence of switching losses from gate resistor is nearly linear, suggesting that changing the gate resistor, a way similar to Si-IGBT technology, can easily control di/dt and dv/dt. Turn-on losses at 200°C are lower compared to those at 25°C, which indicates the influence of the high internal p-type gate layer resistance. Inductive switching numerical analysis suggested the strong influence of channel doping conditions on the turn-on switching performance. The fast switching normally-off JFET devices require heavily doped narrow JFET channel design.


2018 ◽  
Vol 7 (04) ◽  
pp. 23808-23816
Author(s):  
C. Srideepa ◽  
S.Sathish Kumar ◽  
R. Nagarajan

This paper presents a new high step-up isolated DC-DC converter topology for photovoltaic system. The suggested configuration provides a converter with high voltage gain and reduced switch stress by using three coupled inductor with two hybrid voltage multiplier cell. The operation of the proposed converter is based on a charging capacitor with a single switch in its structure. A passive clamp circuit composed of capacitors and diodes is employed in the converter structure for lowering the voltage stress on the power switch as well as increasing the voltage gain of the converter. Since the voltage stress is low in the provided topology, a switch with a small ON-state resistance can be used. As a result, the losses are decreased and the efficiency is increased. The design of DC-DC boost converter is also discussed in detail. Simulation of DC-DC converter is performed in MATLAB/Simulink and the result are verified


Author(s):  
P. Nithin and Dr. R. Rajeswari

In this paper, a novel high voltage gain DC-DC converter based on coupled inductor and voltage multiplier technique is proposed. The benefits of the proposed converter are ultra-high voltage gain, low voltage stress across the power switch and very low input current ripple by employing a low current ripple structure (LCR) at the input side. A low on state resistance (RDS(on)) of the power switch can be employed since the voltage stress is a maximum of 25% of the output voltage and the conduction losses of the switch is also reduced. Design of a 1.9kW, 48V at the low voltage side and 430V at the high voltage side is done and verified by simulation. Simulation results show an efficiency of over 93% when operating in continuous conduction mode (CCM).


1993 ◽  
Vol 3 (9) ◽  
pp. 1719-1728
Author(s):  
P. Dollfus ◽  
P. Hesto ◽  
S. Galdin ◽  
C. Brisset

Author(s):  
Cheng-Piao Lin ◽  
Chin-Hsin Tang ◽  
Cheng-Hsu Wu ◽  
Cheng-Chun Ting

Abstract This paper analyzes several SRAM failures using nano-probing technique. Three SRAM single bit failures with different kinds of Gox breakdown defects analyzed are gross function single bit failure, data retention single bit failure, and special data retention single bit failure. The electrical characteristics of discrete 6T-SRAM cells with soft breakdown are discussed and correlated to evidences obtained from physical analysis. The paper also verifies many previously published simulation data. It utilizes a 6T-SRAM vehicle consisting of a large number of SRAM cells fabricated by deep sub-micron, dual gate, and copper metallization processes. The data obtained from this paper indicates that Gox breakdown location within NMOS pull-down device has larger a impact on SRAM stability than magnitude of gate leakage current, which agrees with previously published simulation data.


Author(s):  
Femi Robert

Background: Switches are important component in electrical system. The switches needs to have the advantages of low ON-state resistance, very high OFF-state resistance, high isolation, no leakage current, less power loss, fast switching, high linearity, small size, arcless and low cost in bulk production. Also these switches have to be reliable and environmental friendly. Methods: In this paper, macro and microswitches for power applications are extensively reviewed and summarized. Various types of switches such as mechanical, solid-state, hybrid and micromechanical switches have been used for power applications are reviewed. The importance and challenge in achieving arcless switching is presented. Results: The use of micromechanical switches for power applications, actuation techniques, switching modes, reliability and lifetime are also reviewed. The modeling and design challenges are also reviewed. Conclusion: The applications of micromechanical switches shows that the switches can reduce the leakage current in battery operated systems and reduce the size of the system considerably.


1971 ◽  
Vol 7 (22) ◽  
pp. 661 ◽  
Author(s):  
J.A. Turner ◽  
A.J. Waller ◽  
E. Kelly ◽  
D. Parker

Sign in / Sign up

Export Citation Format

Share Document