Switching Performance of Epitaxially Grown Normally-Off 4H-SiC JFET

2008 ◽  
Vol 600-603 ◽  
pp. 1067-1070 ◽  
Author(s):  
Rajesh Kumar Malhan ◽  
S.J. Rashid ◽  
Mitsuhiro Kataoka ◽  
Yuuichi Takeuchi ◽  
Naohiro Sugiyama ◽  
...  

Static and dynamic behavior of the epitaxially grown dual gate trench 4H-SiC junction field effect transistor (JFET) is investigated. Typical on-state resistance Ron was 6 – 10mΩcm2 at VGS = 2.5V and the breakdown voltage between the range of 1.5 – 1.8kV was realized at VGS = −5V for normally-off like JFETs. It was found that the turn-on energy delivers the biggest part of the switching losses. The dependence of switching losses from gate resistor is nearly linear, suggesting that changing the gate resistor, a way similar to Si-IGBT technology, can easily control di/dt and dv/dt. Turn-on losses at 200°C are lower compared to those at 25°C, which indicates the influence of the high internal p-type gate layer resistance. Inductive switching numerical analysis suggested the strong influence of channel doping conditions on the turn-on switching performance. The fast switching normally-off JFET devices require heavily doped narrow JFET channel design.

2019 ◽  
Vol 963 ◽  
pp. 797-800 ◽  
Author(s):  
Ajit Kanale ◽  
Ki Jeong Han ◽  
B. Jayant Baliga ◽  
Subhashish Bhattacharya

The high-temperature switching performance of a 1.2kV SiC JBSFET is compared with a 1.2kV SiC MOSFET using a clamped inductive load switching circuit representing typical H-bridge inverters. The switching losses of the SiC MOSFET are also evaluated with a SiC JBS Diode connected antiparallel to it. Measurements are made with different high-side and low-side device options across a range of case temperatures. The JBSFET is observed to display a reduction in peak turn-on current – up to 18.9% at 150°C and a significantly lesser turn-on switching loss – up to 46.6% at 150°C, compared to the SiC MOSFET.


2015 ◽  
Vol 821-823 ◽  
pp. 765-768 ◽  
Author(s):  
Qing Chun Jon Zhang ◽  
Jennifer Duc ◽  
Brett Hull ◽  
Jonathan Young ◽  
Sei Hyung Ryu ◽  
...  

A new MOSFET structure named the CIMOSFET (Central Implant MOSFET) has been presented and experimentally confirmed on SiC. The novelty of the CIMOSFET lies in a p-type implant introduced in the middle of the JFET area to shield the oxide interface field from the drain bias. Compared to the commercially available 1200 V SiC DMOSFET, this new concept has significantly reduced the on-resistance (Ron) and gate-drain capacitance (Cgd) simultaneously, produced a record low Ron·Qgd Figure of Merit of 455 mΩ·nC at 25°C, and 700 mΩ·nC at 150°C (~30% of the best data found). Only a 55% increase in Ron from 25°C to 150°C has been achieved due to the highly doped drift layer used on the CIMOSFET. Inductive load switching measurements have shown the CIMOSFET exhibits a fast switching performance. The CIMOSFET blocks 1600 V even though its drift doping is higher than that of the conventional DMOSFETs.


Author(s):  
А.И. Михайлов ◽  
А.В. Афанасьев ◽  
В.А. Ильин ◽  
В.В. Лучинин ◽  
С.А. Решанов ◽  
...  

Abstract A method for reducing the on-state resistance of a high-power 4 H -SiC metal-oxide-semiconductor field-effect transistor (MOSFET) by forming a buried channel via the growth of epitaxial layers on the surface of the heavily doped p -region is proposed. The features of the carrier transport in the epitaxial buried channel are considered in comparison with that fabricated by conventional technology. A more than threefold decrease in the resistance of the high-power MOSFET is achieved.


2019 ◽  
Vol 963 ◽  
pp. 625-628
Author(s):  
Ajit Kanale ◽  
B. Jayant Baliga ◽  
Ki Jeong Han ◽  
Subhashish Bhattacharya

The high-temperature switching performance of a 1.2kV SiC JBSFET is compared with a 1.2kV SiC MOSFET using a clamped inductive load switching circuit representing typical H-bridge inverters. The switching losses of the SiC MOSFET are also evaluated with a SiC JBS Diode connected antiparallel to it. Measurements are made with different high-side and low-side device options across a range of case temperatures. The JBSFET is observed to display a reduction in peak turn-on current – up to 18.9% at 150°C and a significantly lesser turn-on switching loss – up to 46.6% at 150°C, compared to the SiC MOSFET.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3802 ◽  
Author(s):  
Maosheng Zhang ◽  
Na Ren ◽  
Qing Guo ◽  
Kuang Sheng

The SiC (silicon carbide) high-power module has great potential to replace the IGBT (insulated gate bipolar transistor) power module in high-frequency and high-power applications, due to the superior properties of fast switching and low power loss, however, when the SiC high-power module operates under inappropriate conditions, the advantages of the SiC high-power module will be probably eliminated. In this paper, four kinds of SiC high-power modules are fabricated to investigate fast switching performance. The variations in characteristics of drain-source voltage at turn-on transient under the combined conditions of multiple factors are studied. A characteristic of voltage plateau is observed from the drain-source voltage waveform at turn-on transient in the experiments, and the characteristic is reproduced by simulation. The mechanism behind the voltage plateau is studied, and it is revealed that the characteristic of drain-source voltage plateau is a reflection of the miller plateau effect of gate-source voltage on drain-source voltage under the combined conditions of fast turn-on speed and low DC bus voltage, while the different values of drain-source voltage plateau are attributed to the discrepancy of structure between upper-side and lower-side in the corresponding partial path of the drain circuit loop inside the module, with the standard 62 mm package outline.


2020 ◽  
Vol 1004 ◽  
pp. 795-800 ◽  
Author(s):  
Masakazu Okada ◽  
Teruaki Kumazawa ◽  
Yusuke Kobayashi ◽  
Masakazu Baba ◽  
Shinsuke Harada

A 1.2 kV silicon carbide (SiC) SBD-wall-integrated trench metal oxide semiconductor field effect transistor (MOSFET) (SWITCH-MOS) exhibits potential for solving body-PiN-diode-related problems such as bipolar forward degradation and switching losses among relatively low breakdown voltage 1.2 kV-class SiC MOSFETs. In this study, dynamic characteristics and switching losses of the SWITCH-MOS and conventional MOSFET are compared. The results demonstrate that the SWITCH-MOS exhibits smaller turn-on and reverse recovery losses than a conventional MOSFET at high temperatures. Ruggedness performances such as short circuit and unclamped inductive switching capabilities were evaluated.


2000 ◽  
Vol 640 ◽  
Author(s):  
Q. Zhang ◽  
V. Madangarli ◽  
Y. Gao ◽  
T. S. Sudarshan

ABSTRACTForward and reverse current – voltage (I–V) characteristics of N and P-type Schottky diodes on 6H-SiC are compared in a temperature range of room temperature to 550K. While the room temperature I–V characteristics of the N-type Schottky diode after turn-on is more or less linear up to ∼ 100 A/cm2, the I–V characteristics of the P-type Schottky diode shows a non-linear behavior even after turn-on, indicating a variation in the on-state resistance with increase in forward current. For the first time it is shown that at high current densities (> 210 A/cm2) the forward voltage drop across P type Schottky diodes is lower than that across N type Schottky diodes on 6H-SiC. High temperature measurements indicate that while the on-state resistance of N type Schottky diodes increases with increase in temperature, the on-state resistance of P type Schottky diodes decreases with increase in temperature until a certain temperature. While the N-type diodes seem to have soft breakdown characteristics, the P-type diodes exhibit more or less abrupt breakdown characteristics.


2014 ◽  
Vol 778-780 ◽  
pp. 875-878
Author(s):  
Satoru Akiyama ◽  
Kaoru Katoh ◽  
Haruka Shimizu ◽  
Ayumu Hatanaka ◽  
Takashi Ogawa ◽  
...  

A gate-drive voltage for a normally-off silicon-carbide vertical-trench junction-gate field-effect transistor (JFET) was designed for a server power supply with 94% efficiency. Since the on-state resistance of the JFET is strongly depends on the gate voltage and a large gate-leakage current between the gate electrode and source flows by applying an excessively high-gate voltage, we therefore must set an adequate turn-on gate-drive voltage to suppress the increase in power loss. The optimum gate-drive voltage design was estimated to be 2.1 V, resulting in a high efficiency of 94% even with a gate-drive voltage variation of ±0.3 V.


2013 ◽  
Vol 740-742 ◽  
pp. 946-949
Author(s):  
Jacek Rabkowski ◽  
Dimosthenis Peftitsis ◽  
Mietek Bakowski ◽  
Hans Peter Nee

The paper discusses the switching performance of the double-gate SiC trench JFET. In applications such as dc/dc converters, when fast switching is expected the standard totem-pole driver is not sufficient. The reason for this is that both the internal resistance and the parasitic capacitances of this device are significantly higher than for other designs. Instead, the gate driver with a dynamic current source is proposed in this paper to speed-up the switching process. Performed double-pulse measurements show improved dynamic performance of the tested DGTJFET with the new driver.


2016 ◽  
Vol 858 ◽  
pp. 848-851 ◽  
Author(s):  
Christian T. Banzhaf ◽  
Stephan Schwaiger ◽  
Dick Scholten ◽  
Stefan Noll ◽  
Michael Grieb

This paper introduces n-channel normally-off Trench-MOSFETs on 4H-SiC featuring a blocking voltage of 600 V and 1200 V. The Trench-MOSFETs exhibit a specific room temperature on-state resistance RDS,on of 1.5 mΩ cm² and 2.7 mΩ cm², respectively. It is shown that a further reduction of the RDS,on by approximately 25 % can be achieved using square-shaped or hexagonal unit cells instead of stripe-shaped unit cells. The Trench-MOSFET switching characteristics using a double pulse setup with a switching current Isw of 100 A and a switching voltage Vsw of 450 V is presented and discussed. The short turn-off and turn-on times in the range of several ten nanoseconds yield large maximum disw/dt and dvsw/dt values, which enable highly efficient power conversion with low switching losses.


Sign in / Sign up

Export Citation Format

Share Document