On-site electrolysis sodium metal production by offshore wind or solar energy for hydrogen storage and hydrogen fuel cycle

Author(s):  
Masataka Murahara ◽  
Kazuichi Seki
2009 ◽  
Vol 1216 ◽  
Author(s):  
Masataka Murahara ◽  
Kazuichi Seki ◽  
Yuji Sato ◽  
Etsuo Fujiwara

AbstractSodium metal reacts with water explosively to generate hydrogen. Therefore, sodium metal can have an important role as a hydrogen storage material. Seawater contains water most and sodium second. Seawater is electrolyzed by offshore wind or solar cell power generation to produce sodium; which is transported to a thermoelectric power plant on land and then is reacted with water to produce hydrogen for electric power generation. Sodium hydroxide, a by-product, is used as a raw material for soda industries. In the sodium production process, many by-products such as fresh water, magnesium, sodium hydroxide, hydrochloric acid, and sulfuric acid are produced. Thus, sodium metal is an economical, renewable, and sustainable fuel that discharges neither CO2 nor radioactivity.


2011 ◽  
Vol 1311 ◽  
Author(s):  
Masataka Murahara ◽  
Toshio Ohkawara

ABSTRACTHydrogen was converted to such a material as coal or oil with a low specific gravity so that it could be stored for a longer period and transported for a long distance at room temperature and under atmospheric pressure; which is sodium metal or sodium hydride. Sodium metal is produced with molten-salt electrolysis from seawater by wind power and transported to a thermoelectric power station in the consumption place for hydrogen-fueled combustion power generation. Sodium hydroxide, a waste, is re-electrolyzed to produce sodium for hydrogen generation; which constructs a hydrogen fuel cycle. This hydrogen fuel cycle is a clean, environmentally friendly recycle system that never requires repeated supply of raw materials in the same manner as the nuclear fuel cycle. Sodium or sodium hydride is an alternative energy.


Author(s):  
Saeed Kazemiabnavi ◽  
Aneet Soundararaj ◽  
Haniyeh Zamani ◽  
Bjoern Scharf ◽  
Priya Thyagarajan ◽  
...  

In recent years, there has been increased interest in fuel cells as a promising energy storage technology. The environmental impacts due to the extensive fossil fuel consumption is becoming increasingly important as greenhouse gas (GHG) levels in the atmosphere continue to rise rapidly. Furthermore, fuel cell efficiencies are not limited by the Carnot limit, a major thermodynamic limit for power plants and internal combustion engines. Therefore, hydrogen fuel cells could provide a long-term solution to the automotive industry, in its search for alternate propulsion systems. Two most important methods for hydrogen delivery to fuel cells used for vehicle propulsion were evaluated in this study, which are fuel processing and hydrogen storage. Moreover, the average fuel cost and the greenhouse gas emission for hydrogen fuel cell (H2 FCV) and gasoline fuel cell (GFCV) vehicles are compared to that of a regular gasoline vehicle based on the Argonne National Lab’s GREET model. The results show that the average fuel cost per 100 miles for a H2 FCV can be up to 57% lower than that of regular gasoline vehicles. Moreover, the obtained results confirm that the well to wheel greenhouse gas emission of both H2 FCV and GFCV is significantly less than that of regular gasoline vehicles. Furthermore, the investment return period for hydrogen storage techniques are compared to fuel processing methods. A qualitative safety and infrastructure dependency comparison of hydrogen storage and fuel processing methods is also presented.


2019 ◽  
Vol 21 (48) ◽  
pp. 26292-26300 ◽  
Author(s):  
Batjargal Sainbileg ◽  
Ying-Ren Lai ◽  
Li-Chyong Chen ◽  
Michitoshi Hayashi

Photocatalytic water splitting on the dual-defective SnS2 monolayer is a promising way to produce hydrogen fuel from solar energy.


Author(s):  
Bo Yang ◽  
Jian-ping Yao ◽  
Yi-wen Yuan ◽  
Jie-lu Wang ◽  
Yao-zhou Qian ◽  
...  

Hydrogen energy as the cleanest fuel to replace gasoline has been accepted by society, hydrogen fuel could be promoted based on the safety of hydrogen-fuel storage containers. For risk-controlling of hydrogen storage containers, there are many laws and regulations in UN and EU set the strict technical requirements on high pressure hydrogen storage systems and require a lot of rigorous experimental verification should be performed before mass production. Frame of GTR No.13, ECER No.134 and EU No406/2010 and the content relevant with high-pressure hydrogen storage container would be discussed emphatically in this paper. Rigorous testing methods in regulations and standards are compared and comments on hydrogen storage container performance testing are provided, besides, some important testing items are discussed.


2018 ◽  
Vol 70 ◽  
pp. 01004
Author(s):  
Johannes Gulden ◽  
Andreas Sklarow ◽  
Thomas Luschtinetz

The aim of the presented project is the technological development of hydrogen storage in methanol. This technology enables the carbon dioxide-based chemical storage of renewable energies as well as a decentralized supply of energy and hydrogen. Additional advantages are the very good compatibility with the existing infrastructure for liquid energy storage as well as the temporal decoupling of energy production and consumption. The latter can be managed independently, thus taking into account the fluctuating nature of wind and solar energy. The centrepiece is the use of new catalysts and processes that enable the chemical reactions in the methanol cycle under mild conditions.


Sign in / Sign up

Export Citation Format

Share Document