Fine Pitch Compliant Bump Interconnection for Flip chip on Flexible Display Packaging by Anisotropic Conductive Film

Author(s):  
Yao-Sheng Lin ◽  
Tsung-Fu Yang ◽  
Wen-Chi Chen ◽  
Tai-Hung Chen ◽  
Chun-Cheng Cheng ◽  
...  
2016 ◽  
Vol 2016 (1) ◽  
pp. 000044-000049 ◽  
Author(s):  
Daniel Nilsen Wright ◽  
Branson D. Belle ◽  
Kari Schjølberg-Henriksen ◽  
Hoang-Vu Nguyen ◽  
Jakob Gakkestad ◽  
...  

Abstract An anisotropic conductive film (ACF) can be utilized to simultaneously form mechanical bonds and electrical connections during flip-chip assembly. The electrical connection is created by trapping randomly dispersed metallized polymer spheres (MPS) in the ACF that are deformed during the bonding process. This work postulates that the reliability of interconnects formed with ACF depends on the degree to which the MPS are deformed. Silicon samples with fine-pitch electrical test structures were flip-chip assembled using an ACF and measured in-situ during environmental testing. Interconnects with MPS deformation below 60% proved more stable than interconnects with higher deformation during exposure to 85% relative humidity at 20 °C, 45 °C, 60 °C and 85 °C, as postulated. On the other hand, the stability of the interconnects did not show a dependence on MPS deformation during exposure to thermal shock cycling (TSC) (−55 °C / +125 °C, 7 s transit time, 700 cycles). The results suggest that deformation of MPS is a central factor with respect to reliability of ACF-bonded fine-pitch samples exposed to humid conditions, but the results also indicate that other failure mechanisms are more important for samples exposed to thermally unstable conditions.


1999 ◽  
Vol 22 (4) ◽  
pp. 575-581 ◽  
Author(s):  
Myung-Jin Yim ◽  
Woonghwan Ryu ◽  
Young-Doo Jeon ◽  
Junho Lee ◽  
Seungyoung Ahn ◽  
...  

2013 ◽  
Vol 302 ◽  
pp. 182-188
Author(s):  
Chao Ming Lin

Anisotropic conductive film (ACF), is a lead-free and fine-pitch interconnect materials that is commonly used in liquid crystal display (LCD) manufacturing to make and maintain the electrical and mechanical connections from the driver IC to the substrate. A key issue in the ACF technology is the packaging yield or failure probability, and performance of ACF’s material formula composition. This paper utilizes the V-shaped curve method to analyze the failure probability of composite ACF packages with a smart composition or a functional formula. In the proposed model, the probability of opening failures is modeled using a Poisson function, modified to take into account the average conception on the effective conductive area between opposing pads. Meanwhile, the probability estimation of bridging failures is based on the Box-Strip-Brick model between the neighboring pad pairs in the array. The results show the derived probability formulation can involve the probability conceptions of the composite ACF into a complete evaluation computation.


Sign in / Sign up

Export Citation Format

Share Document