Pad Cratering Based Failure Criterion for the Life Prediction of Board Level Cyclic Bending Test

Author(s):  
Qiming Zhang ◽  
Jeffery C. C. Lo ◽  
S. W. Ricky Lee

2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Qiming Zhang ◽  
S. W. Ricky Lee

Abstract Repeated loading is an important reason to cause pad cratering fatigue failure in ball grid array (BGA) device in printed circuit board (PCB) assembly. For industry application, the board level drop test is commonly applied to evaluate the pad cratering fatigue strength under the repetitive drop loading. Although this testing method is consistent with the actual service condition of BGA-PCB assembly, it is extremely time consuming in the testing operation and expensive in costs. Another fatigue evaluation testing method for BGA-PCB assembly is the board level cyclic bending test. Compare with the board level drop test, this testing method can be handled by universal testing machine automatically without manual operation during the testing process. In consequence, the cyclic bending test has the merits of simple, fast, and low costs, and it is always desirable to evaluate the repeated drop life of pad cratering with cyclic bending test. This research proposes a correlation between the cyclic bending and repetitive drop test in BGA-PCB assemblies. With assistance of finite element method, the equivalent cyclic bending testing conditions of drop tests are developed. The experimental validation is also conducted to prove accuracy of the correlation. From the analysis of finite element method and experiments, both cyclic bending tests and repetitive drop tests agree with the same strain–number of cycle (S–N) curve. This means the S–N curve can be treated as a generalized failure criterion of fatigue induced pad cratering. The conclusion is crucial for reliability design phases to prevent the pad cratering fatigue failure.



Author(s):  
Qiming Zhang ◽  
Shi-Wei Ricky Lee

Abstract Conventional reliability tests for the evaluation of pad cratering resistance are mainly classified into two categories: the board level test and the joint level test. The board level test is to imitate the loading conditions during normal operation. However, this type of test is expensive and not flexible. The joint level test is used extensively in the industry because it has the advantages of lower cost, higher throughput, and more quantitative results. It also allows the elimination of confounding factors such as PCB and component stiffness. Therefore, it is always desirable to predict the board level performance by a joint level test. In order to achieve this objective, the correlation between the joint level and the board level tests must be fully understood. Nevertheless, a precise correlation between the two types of tests for pad cratering evaluation is yet to be defined. This study investigates the pad cratering failure mode for the correlation of critical failure factors between joint and board level tests. An intermediate critical failure factor could be taken as a failure criterion in board level testing for failure detection. For verifying the validity of such a failure criterion, an experimental study should be performed. The 4-point bending test is chosen as the board level test for critical failure factor validation. In addition, an innovative pin shear test method is developed as the joint level test for failure factor detection. Both test methods are assessed by a series of parametric studies with an optimized process to ensure the accuracy of the results. From the results of the experimental study and simulation, the critical failure factor correlation is established between the board level 4-point bending and the joint level pin shear test. Using finite element analysis (FEA), the critical failure strain is identified from the pin shear test model and will be employed as the board level failure criterion. Subsequently the obtained failure criterion is verified by a 4-point bending model. As a result, this indirect correlation method can predict the board level failure with various geometric parameters.











Sign in / Sign up

Export Citation Format

Share Document