A Multi-Purpose Testbench for Determining the Parameters of Moving Objects Based on the Processing of Heterogeneous Sensory Information in the On-Board System of an Autonomous Robot

Author(s):  
Maria A. Volkova ◽  
Alexey M. Romanov
eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Julia L Semmelhack ◽  
Joseph C Donovan ◽  
Tod R Thiele ◽  
Enrico Kuehn ◽  
Eva Laurell ◽  
...  

Zebrafish larvae show characteristic prey capture behavior in response to small moving objects. The neural mechanism used to recognize objects as prey remains largely unknown. We devised a machine learning behavior classification system to quantify hunting kinematics in semi-restrained animals exposed to a range of virtual stimuli. Two-photon calcium imaging revealed a small visual area, AF7, that was activated specifically by the optimal prey stimulus. This pretectal region is innervated by two types of retinal ganglion cells, which also send collaterals to the optic tectum. Laser ablation of AF7 markedly reduced prey capture behavior. We identified neurons with arbors in AF7 and found that they projected to multiple sensory and premotor areas: the optic tectum, the nucleus of the medial longitudinal fasciculus (nMLF) and the hindbrain. These findings indicate that computations in the retina give rise to a visual stream which transforms sensory information into a directed prey capture response.


2018 ◽  
Vol 120 (6) ◽  
pp. 3257-3274 ◽  
Author(s):  
Eli Brenner ◽  
Jeroen B. J. Smeets

This paper reviews our understanding of the interception of moving objects. Interception is a demanding task that requires both spatial and temporal precision. The required precision must be achieved on the basis of imprecise and sometimes biased sensory information. We argue that people make precise interceptive movements by continuously adjusting their movements. Initial estimates of how the movement should progress can be quite inaccurate. As the movement evolves, the estimate of how the rest of the movement should progress gradually becomes more reliable as prediction is replaced by sensory information about the progress of the movement. The improvement is particularly important when things do not progress as anticipated. Constantly adjusting one’s estimate of how the movement should progress combines the opportunity to move in a way that one anticipates will best meet the task demands with correcting for any errors in such anticipation. The fact that the ongoing movement might have to be adjusted can be considered when determining how to move, and any systematic anticipation errors can be corrected on the basis of the outcome of earlier actions.


Author(s):  
Sheila Achermann ◽  
Terje Falck-Ytter ◽  
Sven Bölte ◽  
Pär Nyström

AbstractIn typical development, infants form predictions about future events based on incoming sensory information, which is essential for perception and goal-directed action. It has been suggested that individuals with autism spectrum disorder (ASD) make predictions differently compared to neurotypical individuals. We investigated how infants who later received an ASD diagnosis and neurotypical infants react to temporarily occluded moving objects that violate initial expectations about object motion. Our results indicate that infants regardless of clinical outcome react similarly to unexpected object motion patterns, both in terms of gaze shift latencies and pupillary responses. These findings indicate that the ability to update representations about such regularities in light of new information may not differ between typically developing infants and those with later ASD.


2020 ◽  
Author(s):  
Björn Jörges ◽  
Joan López-Moliner

Humans expect downwards moving objects to accelerate and upwards moving objects to decelerate. These results have been interpreted as humans maintaining an internal model of gravity. We have previously suggested an interpretation of these results within a Bayesian framework of perception: earth gravity could be represented as a Strong Prior that overrules noisy sensory information (Likelihood) and therefore attracts the final percept (Posterior) very strongly. Based on this framework, we use published data from a timing task involving gravitational motion to determine the mean and the standard deviation of the Strong Earth Gravity Prior. To get its mean, we refine a model of mean timing errors we proposed in a previous paper (Björn Jörges & López-Moliner, 2019), while expands the range of conditions under which it yields adequate predictions of performance. This underscores our previous conclusion that the gravity prior is likely to be very close to 9.81 m/s². To obtain the standard deviation, we identify different sources of sensory and motor variability reflected in timing errors. We then model timing responses based on quantitative assumptions about these sensory and motor errors for a range of standard deviations of the earth gravity prior, and find that a standard deviation of around 2 m/s² makes for the best fit. This value is likely to represent an upper bound, as there are strong theoretical reasons along with support empirical evidence for the standard deviation of the earth gravity being lower than this value.


2021 ◽  
pp. 1-17
Author(s):  
Lowell W. Thompson ◽  
Byounghoon Kim ◽  
Zikang Zhu ◽  
Bas Rokers ◽  
Ari Rosenberg

Abstract Robust 3-D visual perception is achieved by integrating stereoscopic and perspective cues. The canonical model describing the integration of these cues assumes that perspective signals sensed by the left and right eyes are indiscriminately pooled into a single representation that contributes to perception. Here, we show that this model fails to account for 3-D motion perception. We measured the sensitivity of male macaque monkeys to 3-D motion signaled by left-eye perspective cues, right-eye perspective cues, stereoscopic cues, and all three cues combined. The monkeys exhibited idiosyncratic differences in their biases and sensitivities for each cue, including left- and right-eye perspective cues, suggesting that the signals undergo at least partially separate neural processing. Importantly, sensitivity to combined cue stimuli was greater than predicted by the canonical model, which previous studies found to account for the perception of 3-D orientation in both humans and monkeys. Instead, 3-D motion sensitivity was best explained by a model in which stereoscopic cues were integrated with left- and right-eye perspective cues whose representations were at least partially independent. These results indicate that the integration of perspective and stereoscopic cues is a shared computational strategy across 3-D processing domains. However, they also reveal a fundamental difference in how left- and right-eye perspective signals are represented for 3-D orientation versus motion perception. This difference results in more effective use of available sensory information in the processing of 3-D motion than orientation and may reflect the temporal urgency of avoiding and intercepting moving objects.


1999 ◽  
Vol 13 (2) ◽  
pp. 117-125 ◽  
Author(s):  
Laurence Casini ◽  
Françoise Macar ◽  
Marie-Hélène Giard

Abstract The experiment reported here was aimed at determining whether the level of brain activity can be related to performance in trained subjects. Two tasks were compared: a temporal and a linguistic task. An array of four letters appeared on a screen. In the temporal task, subjects had to decide whether the letters remained on the screen for a short or a long duration as learned in a practice phase. In the linguistic task, they had to determine whether the four letters could form a word or not (anagram task). These tasks allowed us to compare the level of brain activity obtained in correct and incorrect responses. The current density measures recorded over prefrontal areas showed a relationship between the performance and the level of activity in the temporal task only. The level of activity obtained with correct responses was lower than that obtained with incorrect responses. This suggests that a good temporal performance could be the result of an efficacious, but economic, information-processing mechanism in the brain. In addition, the absence of this relation in the anagram task results in the question of whether this relation is specific to the processing of sensory information only.


Sign in / Sign up

Export Citation Format

Share Document