Role of endogenous hydrogen peroxide during angiotensin type 1 receptor blockers administration in pacing-induced metabolic coronary vasodilatation in dogs in vivo

Author(s):  
Toyotaka Yada ◽  
Hiroaki Shimokawa ◽  
Osamu Hiramatsu ◽  
Masami Goto ◽  
Yasuo Ogasawara ◽  
...  
Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 959 ◽  
Author(s):  
Jefferson Antônio Leite ◽  
Gabriela Pessenda ◽  
Isabel C. Guerra-Gomes ◽  
Alynne Karen Mendonça de Santana ◽  
Camila André Pereira ◽  
...  

Pattern recognition receptors (PRRs), such as Nod2, Nlrp3, Tlr2, Trl4, and Tlr9, are directly involved in type 1 diabetes (T1D) susceptibility. However, the role of the cytosolic DNA sensor, AIM2, in T1D pathogenesis is still unknown. Here, we demonstrate that C57BL/6 mice lacking AIM2 (AIM2−/−) are prone to streptozotocin (STZ)-induced T1D, compared to WT C57BL/6 mice. The AIM2−/− mice phenotype is associated with a greater proinflammatory response in pancreatic tissues, alterations in gut microbiota and bacterial translocation to pancreatic lymph nodes (PLNs). These alterations are related to an increased intestinal permeability mediated by tight-junction disruption. Notably, AIM2−/− mice treated with broad-spectrum antibiotics (ABX) are protected from STZ-induced T1D and display a lower pancreatic proinflammatory response. Mechanistically, the AIM2 inflammasome is activated in vivo, leading to an IL-18 release in the ileum at 15 days after an STZ injection. IL-18 favors RegIIIγ production, thus mitigating gut microbiota alterations and reinforcing the intestinal barrier function. Together, our findings show a regulatory role of AIM2, mediated by IL-18, in shaping gut microbiota and reducing bacterial translocation and proinflammatory response against insulin-producing β cells, which ultimately results in protection against T1D onset in an STZ-induced diabetes model.


Kardiologiia ◽  
2020 ◽  
Vol 60 (4) ◽  
pp. 4-9 ◽  
Author(s):  
Yu. V. Mareev ◽  
V. Yu. Mareev

The review addressed the relationship of coronavirus disease 2019 (COVID-19) with functioning of the renin-angiotensin-aldosterone axis and the causes for unfavorable prognosis depending on patients’ age and comorbidities. The authors discussed in detail potential effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists on the risk of infection and the course of COVID-2019 as well as the effect of SARS-COV2 virus on the cardiovascular system.


2016 ◽  
Vol 64 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Feyza Engin

Type 1 diabetes (T1D) results from an autoimmune-mediated destruction of pancreatic β cells. The incidence of T1D is on the rise globally around 3% to 5% per year and rapidly increasing incidence in younger children is of the greatest concern. currently, there is no way to cure or prevent T1D; hence, a deeper understanding of the underlying molecular mechanisms of this disease is essential to the development of new effective therapies. The endoplasmic reticulum (ER) is an organelle with multiple functions that are essential for cellular homeostasis. Excessive demand on the ER, chronic inflammation, and environmental factors lead to ER stress and to re-establish cellular homeostasis, the adaptive unfolded protein response (UPR) is triggered. However, chronic ER stress leads to a switch from a prosurvival to a proapoptotic UPR, resulting in cell death. Accumulating data have implicated ER stress and defective UPR in the pathogenesis of inflammatory and autoimmune diseases, and ER stress has been implicated in β-cell failure in type 2 diabetes. However, the role of ER stress and the UPR in β-cell pathophysiology and in the initiation and propagation of the autoimmune responses in T1D remains undefined. This review will highlight the current understanding and recent in vivo data on the role of ER stress and adaptive responses in T1D pathogenesis and the potential therapeutic aspect of enhancing β-cell ER function and restoring UPR defects as novel clinical strategies against this disease.


2019 ◽  
Vol 73 (6) ◽  
pp. 483-488 ◽  
Author(s):  
Sarah G Howard

This narrative review summarises recently published epidemiological and in vivo experimental studies on exposure to environmental chemicals and their potential role in the development of type 1 diabetes mellitus (T1DM). These studies focus on a variety of environmental chemical exposures, including to air pollution, arsenic, some persistent organic pollutants, pesticides, bisphenol A and phthalates. Of the 15 epidemiological studies identified, 14 include measurements of exposures during childhood, 2 include prenatal exposures and 1 includes adults over age 21. Together, they illustrate that the role of chemicals in T1DM may be complex and may depend on a variety of factors, such as exposure level, timing of exposure, nutritional status and chemical metabolism. While the evidence that these exposures may increase the risk of T1DM is still preliminary, it is critical to investigate this possibility further as a means of preventing T1DM.


2003 ◽  
Vol 23 (11) ◽  
pp. 4026-4033 ◽  
Author(s):  
Hidetoshi Takada ◽  
Nien-Jung Chen ◽  
Christine Mirtsos ◽  
Shinobu Suzuki ◽  
Nobutaka Suzuki ◽  
...  

ABSTRACT Signaling from tumor necrosis factor receptor type 1 (TNFR1) can elicit potent inflammatory and cytotoxic responses that need to be properly regulated. It was suggested that the silencer of death domains (SODD) protein constitutively associates intracellularly with TNFR1 and inhibits the recruitment of cytoplasmic signaling proteins to TNFR1 to prevent spontaneous aggregation of the cytoplasmic death domains of TNFR1 molecules that are juxtaposed in the absence of ligand stimulation. In this study, we demonstrate that mice lacking SODD produce larger amounts of cytokines in response to in vivo TNF challenge. SODD-deficient macrophages and embryonic fibroblasts also show altered responses to TNF. TNF-induced activation of NF-κB is accelerated in SODD-deficient cells, but TNF-induced c-Jun N-terminal kinase activity is slightly repressed. Interestingly, the apoptotic arm of TNF signaling is not hyperresponsive in the SODD-deficient cells. Together, these results suggest that SODD is critical for the regulation of TNF signaling.


Sign in / Sign up

Export Citation Format

Share Document