Rapid Prototyping Method for 3D Printed Biomaterial Constructs with Vascular Structures

Author(s):  
R. Maurizio Gullo ◽  
Joachim Koeser ◽  
Oliver Ruckli ◽  
Andrej Eigenmann ◽  
David Hradetzky
Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 783 ◽  
Author(s):  
Matthias Kahr ◽  
Wilfried Hortschitz ◽  
Harald Steiner ◽  
Michael Stifter ◽  
Andreas Kainz ◽  
...  

This paper reports a novel 3D printed MEMS magnetometer with optical readout, which demonstrates the advantages of 3D printing technology in terms of rapid prototyping. Low-cost and fast product development cycles favour 3D printing as an effective tool. Sensitivity measurement with such devices indicate high accuracy and good structural performance, considering material and technological uncertainties. This paper is focusing on the novelty of the rapid, 3D-printing prototyping approach and verification of the working principle for printed MEMS magnetometers.


2020 ◽  
Vol 4 (2) ◽  
pp. 42 ◽  
Author(s):  
Ignazio Blanco

Nowadays, all production, from the smallest ones to large companies, and research activities are affected by the use of 3D printing technology. The major limitation, in order to cover as many fields of application as possible, is represented by the set of 3D printable materials and their limited spectrum of physico-chemical properties. To expand this spectrum and employ the 3D-printed objects in areas such as biomedical, mechanical, electronical and so on, the introduction of fibers or particles in a polymer matrix has been widely studied and applied. In this review, all those studies that proposed modified polymer presenting advantages associated with rapid prototyping are reported.


Lab on a Chip ◽  
2017 ◽  
Vol 17 (16) ◽  
pp. 2785-2792 ◽  
Author(s):  
Pedro F. Costa ◽  
Hugo J. Albers ◽  
John E. A. Linssen ◽  
Heleen H. T. Middelkamp ◽  
Linda van der Hout ◽  
...  

Studying blood clotting in stereolithography 3D-printed microfluidic chips with endothelialised vascular structures.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245206
Author(s):  
Harry Felton ◽  
Robert Hughes ◽  
Andrea Diaz-Gaxiola

This paper reports a novel, negligible-cost and open-source process for the rapid prototyping of complex microfluidic devices in polydimethylsiloxane (PDMS) using 3D-printed interconnecting microchannel scaffolds. These single-extrusion scaffolds are designed with interconnecting ends and used to quickly configure complex microfluidic systems before being embedded in PDMS to produce an imprint of the microfluidic configuration. The scaffolds are printed using common Material Extrusion (MEX) 3D printers and the limits, cost & reliability of the process are evaluated. The limits of standard MEX 3D-printing with off-the-shelf printer modifications is shown to achieve a minimum channel cross-section of 100×100 μm. The paper also lays out a protocol for the rapid fabrication of low-cost microfluidic channel moulds from the thermoplastic 3D-printed scaffolds, allowing the manufacture of customisable microfluidic systems without specialist equipment. The morphology of the resulting PDMS microchannels fabricated with the method are characterised and, when applied directly to glass, without plasma surface treatment, are shown to efficiently operate within the typical working pressures of commercial microfluidic devices. The technique is further validated through the demonstration of 2 common microfluidic devices; a fluid-mixer demonstrating the effective interconnecting scaffold design, and a microsphere droplet generator. The minimal cost of manufacture means that a 5000-piece physical library of mix-and-match channel scaffolds (100 μm scale) can be printed for ~$0.50 and made available to researchers and educators who lack access to appropriate technology. This simple yet innovative approach dramatically lowers the threshold for research and education into microfluidics and will make possible the rapid prototyping of point-of-care lab-on-a-chip diagnostic technology that is truly affordable the world over.


2016 ◽  
Vol 158 (6) ◽  
pp. 1213-1219 ◽  
Author(s):  
Kosuke Kondo ◽  
Naoyuki Harada ◽  
Hiroyuki Masuda ◽  
Nobuo Sugo ◽  
Sayaka Terazono ◽  
...  

2018 ◽  
Vol 210 ◽  
pp. 04047
Author(s):  
Pavel Stoklasek ◽  
Tomas Vecera ◽  
Jiri Moravek

The motivation of this work was to find an appropriate manufacturing method for pedal car accessories. This study describes the application of optical digitization, reverse engineering and rapid prototyping in manufacturing process of accessories for handmade pedal car, which imitates an unique historic Czech car, a Škoda 1000 MB, type 990 Roadster. Two well-known design elements, rear light and front indicator, were digitized by non-contact 3D scanner. The digitized 3D models were used as an inputs for reverse engineering. Their shapes were modified due to technological limits of vacuum forming, scaled and used to design of the 3D printed vacuum forming moulds. The final parts were made of transparent foil, trimmed around the perimeter and airbrushed from the inside. The described process served to verify the manufacturability of these accessories before commencing works on a mass-produced pedal cars intended for sale to customers.


2020 ◽  
Vol 9 (12) ◽  
pp. e9891210692
Author(s):  
Adriana da Fonte Porto Carreiro ◽  
Ana Larisse Carneiro Pereira ◽  
Camila Oliveira Paz ◽  
Rachel Gomes Cardoso ◽  
Clebya Rosália Pereira Medeiros ◽  
...  

The objective of this case report was to describe the clinical sequence for occlusal vertical dimension (OVD) recovering with the manufacture of removable partial dentures (RPD) produced by computer-aided design and rapid prototyping. The patient presented to the Dentistry Department of the Federal University of Rio Grande do Norte reporting dissatisfaction with the superior RPD. At clinical investigation, a fracture in the minor connector and support at the region of tooth 15 was observed, in addition to severe OVD loss. In this case, after obtaining correct OVD, four more sessions were necessary for RPD fabrication. In the first appointment, intraoral scanning was performed to generate STL files used for path of insertion determination in the CAD software. The need for a guide plane on tooth 15 was observed, thus a preparation guide was designed and 3Dprinted to aid axial tooth reduction. At the second visit, after mouth preparation, another intraoral scanning was performed to acquire virtual working models. The RPD framework was designed and 3D printed in a castable resin pattern and invested for cobalt-chromium alloy melting. In the third visit, clinical evaluation of the framework and teeth and artificial gingiva colors selection were performed. The articulated models were then 3D printed, enabling pre-fabricated teeth to be assembled and acrylized. On the fourth appointment, RPD was installed and the patient received routine instructions. In this sense, the use of CAD/CAM technologies presented as a valuable tool to enhance restoration of OVD by the manufacturing of RPD.


2018 ◽  
Vol 24 (2) ◽  
pp. 361-367 ◽  
Author(s):  
R. Hunter Montgomery ◽  
Kelsey Phelan ◽  
Sawyer D. Stone ◽  
Francois Decuir ◽  
Bryant C. Hollins

Purpose This paper aims to investigate the applicability of 3D-printed molds to be used as a substitute for photolithography in the formation of polymer-based stamps. It proposes leveraging 3D printing as a rapid prototyping tool to be applied to microfluidic fabrication. Design/methodology/approach Different designs are created using computer-aided design (CAD) software and printed via Makerbot 3D printer. The molds serve as negative reliefs for a PDMS stamp. The stamp is used to apply paraffin wax to chromatography paper, creating hydrophobic barriers and hydrophilic channels. The minimum functional channel widths and barrier widths are determined for the method. Findings The method is demonstrated to be effective for bypassing the more cost-prohibitive photolithography approach for rapid paper microdevice fabrication. This approach produces functional channels that can be used for on-chip analytical assays. The minimum functional barrier widths and minimum functional channel widths are in good agreement with other published methods for paper-based microchannel fabrication. Research limitations/implications The approach cannot generate the high-resolution structures possible with photolithography. Therefore, if higher resolutions are needed for a particular application, this approach is not the best. Practical implications The simplicity of the approach introduces an affordable method to create disposable devices that can be used at the point of testing. Originality/value The paper satisfies a need for inexpensive, rapid prototyping of paper-based devices. The method is simple and can be used as a tool for introducing labs to microfluidics research.


Sign in / Sign up

Export Citation Format

Share Document